
© 2024 Lukas Spies

IMPROVING PERFORMANCE OF ITERATIVE SOLVERS ON MODERN
ARCHITECTURES

BY

LUKAS SPIES

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Doctoral Committee:

Professor Luke Olson, Chair
Professor William Gropp
Professor Paul Fischer
Professor Scott MacLachlan, Memorial University of Newfoundland

ABSTRACT

Over the past decade or two massive changes have occurred both in terms of hardware

and software for high performance computing. Large heterogeneous machines are commonly

in use today, presenting new challenges for scientific algorithms. In this thesis we will focus

on the performance of iterative algorithms and explore several different aspects of working

on modern architectures. In the first part we present a novel halo exchange library that is

designed specifically for modern heterogeneous architectures and illustrate how it is not only

easy to use but also flexible and, most importantly, highly performant. In the second chapter

we consider various relaxation schemes for preconditioning a GMRES solver for the Stokes

equations, with a particular focus on their performance on GPUs. We present a few different

schemes but mostly focus on two of them, Vanka and Braess-Sarazin. We show how, when

carefully designed, Vanka is capable of outperforming Braess-Sarazin on the GPU, something

that to our knowledge has never been achieved before. In the final part we move from the

Stokes equations to the Reynolds-Averaged Navier-Stokes equations that arise in the context

of wind turbine modeling. Our focus is on an algorithm that has been of renewed interest

in recent years, restricted additive Schwarz (RAS) paired with ILU. After analyzing our

implementation of RAS and ILU, we design a new solver that incorporates RAS+ILU as

relaxation scheme for an AMG cycle. The AMG cycle is then used as preconditioning for

some of the GMRES solves as part of a new solver we design to solve the RANS equations.

We conclude by extending our solver with homotopy, making it capable of self-tuning for

finding a possible continuation path for solving hard problems.

ii

ACKNOWLEDGMENTS

This thesis would not have been possible without the help and support of so many people.

First, I want to thank my advisor, Dr. Luke Olson, for his support, guidance, and patience

throughout my studies. I also want to thank my Masters advisor Dr. Scott MacLachlan

for his helpful insights and collaboration. I am also grateful to Dr. Andrew Reisner, Dr.

Amanda Bienz, Dr. David Moulton, Dr. Paul Fischer, Dr. Alexey Voronin, and so many

others for being willing to collaborate or lend an ear to listen and give feedback to various

ideas. I want to thank all my family and friends that encouraged me in difficult times,

always pretended to be interested in my latest research even if they did not understand it.

And most of all I want to thank my fabulous and amazing wife, Amanda Foster, the love

of my life. I would never have made it to the end without her unending moral support and

encouragement. This thesis is a testament to all the amazing people mentioned here and so

many beyond. I have been blessed by having met so many amazing people and see so much

of the world throughout the past few years.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Data Transfer Across Large Heterogeneous Machines 1
1.2 Smoothers for Stokes Equations . 1
1.3 RAS+ILU for the Reynolds-Averaged Navier-Stokes Equations 2

CHAPTER 2 DATA TRANSFER ACROSS LARGE HETEROGENEOUS MA-
CHINES . 3
2.1 Requirements . 3
2.2 Existing Work . 3
2.3 Our Solution . 4
2.4 Optimization Strategies . 5
2.5 Performance Model . 9
2.6 Results . 12
2.7 Conclusion . 13

CHAPTER 3 SMOOTHERS FOR THE STOKES EQUATIONS 15
3.1 The Stokes Equations and Their Discretization 16
3.2 Multigrid . 22
3.3 Our Implementation . 27
3.4 Existing Work . 28
3.5 Performance Analysis . 28
3.6 Conclusion . 44

CHAPTER 4 RAS+ILU FOR THE REYNOLDS-AVERAGEDNAVIER-STOKES
EQUATIONS . 46
4.1 Reynolds-Averaged Navier-Stokes (RANS) Equations 46
4.2 Modeling the Reynolds-Stress Tensor . 48
4.3 Simplifications . 52
4.4 Motivating Application . 53
4.5 Discretization and Linearization . 55
4.6 Existing Solvers and Preconditioners . 56
4.7 Recent Work . 64
4.8 Restricted Additive Schwarz (RAS) + Incomplete LU (ILU) 65
4.9 Software . 69
4.10 Proposed Solver . 69
4.11 Resources . 88

CHAPTER 5 CONCLUSION . 92

iv

REFERENCES . 94

APPENDIX A DYNAMIC SOLVER IMPLEMENTATION IN FIREDRAKE 105

v

CHAPTER 1: INTRODUCTION

The focus of this work is on improving performance of algorithms, in particular iterative

solvers, on modern architectures used to solve the Stokes and Navier-Stokes equations. This

thesis consists of three parts: First, we present a new halo exchange library targeting large

heterogeneous machines. Second, we investigate various relaxation schemes with a particu-

lar focus on Vanka and Braess-Sarazin, and explore how utilizing existing structure in the

discretization allows us to take advantage of better memory access patterns. Lastly, we

explore the Reynolds-Averaged Navier-Stokes (RANS) equations and provide an overview of

existing work on solving these equations and their limitations in the context of wind turbine

modeling. We develop and analyze a new solver based on existing and new strategies to

obtain a reliable and flexible solver, with a particular focus on AMG paired with Restricted

Additive Schwarz (RAS) and ILU to precondition some of our linear solves.

1.1 DATA TRANSFER ACROSS LARGE HETEROGENEOUS MACHINES

Exchanging data on supercomputers (typically in the form of halo data) is an important

part of many algorithms (in particular iterative algorithms) that make use of distributed

memory. Solving this task often involves code written specifically for some application, du-

plicating the work for every new application. In order to achieve good performance, the code

needs to be carefully hand-tuned to take advantage of some more advanced capabilities of

MPI and the underlying hard- and software, introducing an increasing risk of bugs and cost-

ing time. We discuss different techniques and novel ideas in order to maximize performance

of data transfer across both CPUs and GPUs using MPI, either on its own or in combination

with CUDA, HIP, and OpenCL. These techniques are implemented inside a halo exchange

library called Tausch that is a drop-in solution for existing code and easy to work with for

new code. We highlight the benefits of using Tausch by both real-world applications and a

performance model.

1.2 SMOOTHERS FOR STOKES EQUATIONS

The Stokes equations arise from a linearization of the Navier-Stokes equations, modeling

fluid flow with small advective inertial forces relative to viscous forces and typically have a

small Reynolds number, Re ≪ 1. Using GMRES as a solver for the Stokes equations, we

consider various different types of relaxation schemes used within a multigrid preconditioner,

1

with a particular focus on Braess-Sarazin and Vanka. We illustrate how we are able to take

advantage of a highly structured discretization and data structures that are implemented in

a highly structured way to improve the overall performance. We show how Vanka is capable

of outperforming Braess-Sarazin and how it is indeed a competitive algorithm, in particular

on the GPU.

1.3 RAS+ILU FOR THE REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS

The Reynolds-Averaged Navier-Stokes equations are time-averaged equations that model

the motion for fluid flow, in particular describing turbulent flows. They are based on the con-

cept of Reynolds decomposition by decomposing the Navier-Stokes equations into a fluctuat-

ing and time-averaged (mean) quantity. The RANS equations include a nonlinear Reynolds

stress term that yields a system that is not closed, but requires so-called closure models to

model this quantity. For the purposes of this study we assume the Reynolds-stress tensor

to be zero (thus we essentially obtain the Navier-Stokes equations) to allow us to focus

on our preconditioner and overall solver development. We explore these equations in the

context of wind farms and illustrate how wind flows around a wind turbine and the tur-

bulences that arise from such wind flow. The turbulences add additional difficulties to the

underlying equations, as they introduce shock-like features in the system. Additionally, the

resulting equations come with large Reynolds numbers, typically O(102) to O(103). We give

an overview of some of the commonly used solvers and explore their suitability in solving

our model problem. We then design a new solver that incorporates RAS paired with ILU for

preconditioning some of the linear solves and analyze its performance. We explore the use of

homotopy or continuation methods to improve the performance of this solver and to help us

push our solver to solving more difficult problems than we could do without this approach.

Lastly, we combine everything we learned into the development of a dynamic solver that is

capable of self-tuning its homotopy parameters to find a working continuation path from an

initial problem to the actual target problem.

2

CHAPTER 2: DATA TRANSFER ACROSS LARGE HETEROGENEOUS
MACHINES

Halo exchanges are a part of many if not most applications and often proves to be a

bottleneck. There are many existing solutions implementing such halo exchanges in various

contexts, languages, and programming models. However, most of them are limited to either

their specific programming model (e.g., Kokkos [1]), use case (e.g., DTK [2]), or are simply

out-of-date (e.g., GCL [3]).

2.1 REQUIREMENTS

We identified four design requirements that are essential for a halo exchange library:

1. Ease of use: It should be straight forward to be incorporated into existing code or

added on to new code.

2. Flexible: It should support any type of geometry and data, ideally allowing for different

data types to be combined into single messages.

3. Heterogeneous: It should support both CPUs and GPUs, and any combination of

thereof.

4. Performant: The exchange operation should target efficiency, and performance expec-

tations should be clearly defined.

2.2 EXISTING WORK

There are several existing solutions for communicating halos. We first discuss several tools

that address halo exchanges in a generic way, allowing for their integration into any user

code. Then we mention several existing frameworks that include their own halo handling.

Most of the existing generic tools are targeted towards a specific use case or situation,

with some no longer maintained. The Data Transfer Kit (DTK) [2] is designed primarily

for physics applications, where geometric domains may not conform to the same physical

space, potentially with mismatched parallel decomposition. These features are valuable

when needed, but they also introduce unnecessary complexity. The Generic Communication

Layer (GCL) [3] is a library of communication patterns where the halo exchange operation

is divided into different layers that can be tweaked and updated independently. It is a

templated header-only C++ library and allows for flexibility in how it can be used, leading

3

to a more complex API. GCL is described as “old code” in its GitHub repository [4], with

its last update in 2017. We are not aware of any applications making use of GCL.

Raja [5, 6] is a library of C++ software abstractions aiming to enable architecture and pro-

gramming model portability for high performance applications. It also provides constructs

for efficient packing and unpacking of data on different computing devices, although it does

not facilitate any actual communication. Tempi [7] is another approach that specifically

targets MPI+CUDA, improving the performance of MPI using CUDA buffers. This design

is achieved through MPI and can thus be easily combined with other tools and libraries that

use MPI. A different approach is taken by Kokkos [1], where a new programming model

is developed that offers local mapping and execution on a variety of architectures. It does

not handle halo exchanges and defers to other codes and frameworks for those. Tpetra [8]

is a package for Trilinos [9] implementing linear algebra objects that uses Kokkos for lo-

cal operations and provides the necessary code for facilitating halo exchanges. PETSc also

provides its own handling of halo exchanges as part of its distributed arrays (DMDA). All

of these come with their own programming models and require the user’s code to adapt to

that. Thus, they require the use of their own custom data structures and also typically

necessitate large code rewrites. Finally, the MiniGhost [10, 11] application in the Mantevo

Project [12] is written in Fortran and serves as stand-alone code to explore and experiment

different programming models. It was last updated in 2016.

2.3 OUR SOLUTION

We developed a new halo exchange library (called Tausch) that introduces several novel

ideas to achieve the goals set out above. It provides a high-level API for halo exchanges using

MPI [13], CUDA [14], HIP [15], and OpenCL [16]. The user determines the traffic pattern,

where the data to be sent lives in memory and where the received data is to be written to

in memory. Tausch then offers various strategies to achieve a high-performance exchange

of the specified data, whether the data comprises a halo or any other type of data. It is a

header-only library, thus relieves the user of having to precompile and link to an additional

library, and it allows for maximum inlining of its member functions. It is written in C++

with a fully compatible C API, and a Fortran interface is also available.

To begin, we first define the notion of a halo in the exchange of data. A halo is any

structured or unstructured area that is used but typically not owned by the local process.

In most applications a halo would lie along the edges of a domain, though this is not a

requirement for Tausch. We refer to data that needs to be sent to another partition’s halo

region as the send halo and, conversely, data that needs to be updated locally with values

4

received from another partition as the receive halo. fig. 2.1 illustrates various types of halos,

both structured and unstructured, all of which can be handled by Tausch.

(a) halo not including corners (b) halo including corners

(c) halo of width 2 (d) unstructured halo

Figure 2.1: Examples of different halos, with the halos highlighted in green.

2.4 OPTIMIZATION STRATEGIES

Tausch employs several strategies to improve the performance of halo exchanges. First, it

uses a compressed format to store halo information instead of storing a full vector indices.

The compressed storage used by Tausch is optimized for structured halo regions, however,

it will work for any halo region form or shape.

The user can either directly specify the halo regions using the compressed format, or make

use of a convenience function that takes in a set of indices of halo data and converts it into the

compressed format. In the latter case, Tausch decomposes that region up into rectangular

subregions corresponding to how the data is laid out in memory. Such a region does not

5

necessarily translate to a rectangular region in the physical setup. Each such subregion is

defined using these 4 integers (see fig. 2.2):

1. Starting index of the region;

2. number of consecutive values (i.e., number of columns);

3. frequency of consecutive values (i.e., number of rows); and

4. stride between the sets of consecutive values.

0 1 2 3 4 5 6 7

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

8 9

18 19

28 29

38 39

48 49
Starting index: 8

Columns: 2
Rows: 5
Stride: 10

→ [8, 2, 5, 10]

Figure 2.2: Example of compressed storage: 10 integers (40 bytes) stored using 4 integers
(16 bytes), halo region highlighted in green.

Using a compressed form allows highly efficient memory operations using memcpy, but also

using strided copies in OpenCL, HIP, and CUDA. Additionally, the memory requirement of

storing halo information is drastically reduced, particularly in cases of structured data. In

the example given in fig. 2.2 the compressed storage requires 2/5 of the memory required for

a full set of halo indices, and the effect increases with larger halo regions. Yet, in the case of

unstructured halo regions, the memory requirement of using the compressed storage might

increase if the region does not easily decompose into into rectangular subregions.

The rectangular subregions found by Tausch do not necessarily correspond to rectangular

regions in the mesh. Instead, in a slightly more abstract sense, they correspond to rectan-

gular regions in the memory — e.g., the example shown in fig. 2.3 illustrates how a 10 × 2

rectangular region in the mesh is detected as 20× 1 rectangular region in the memory.

The same concept extends to three dimensions, where a three dimensional volume is

interpreted by Tausch as a two or possibly one dimensional memory region. It is also

possible to directly pass the halo region information in compressed form to Tausch instead

of vectors of indices. In the case of the example shown in fig. 2.3 both representations (10×2

and 20× 1) are valid.

6

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

Starting index: 0
Columns: 20

Rows: 1
Stride: 0

→ [0, 20, 1, 0]

Figure 2.3: Example of rectangular region not corresponding directly to mesh region, halo
region highlighted in blue.

In general, a one dimensional compression is preferential to a two dimensional one, as it

allows the use of fewer memcpy operations and thus offers better performance. Since a halo

inherently corresponds to the surface of the domain (i.e., at most two dimensional), a three

dimensional compression of the halo brings little to no benefit while increasing the overhead

of the actual compression step.

In addition to the compressed storage of halo indices, it supports various communication

strategies to boost performance if allowed by the underlying hardware and software.

• Derived datatypes: Instead of copying the data to be sent into dedicated send buffers,

it can be sent off directly from the originating buffer by using derived datatypes in

MPI. This allows skipping the intermediate step of copying data into/out of a dedicated

send/receive buffer. However, it also means that the locations of the data-to-be-sent

cannot be altered until the send operation has completed.

• Persistent communication channels: Instead of creating new communication channels

each time they are required, it is possible to establish persistent communication chan-

nels. In particular for iterative algorithms, this allows reusing the existing channels

every iteration reducing the potential overhead.

• Single-copy and multi-copy: Data between the CPU and GPU can be copied with a

single memory copy (beneficial for data that is split across multiple regions) or with

multiple copies, one for each individual region (beneficial for data that mostly belongs

to the same region).

• CUDA-aware MPI: If the underlying architecture supports CUDA-aware MPI, use

thereof has the potential to avoid going through the CPU completely when moving

data between different GPUs.

7

• Remote memory access (RMA): Instead of two-sided communication (sending and

receiving data explicitly) an MPI window can be defined that makes certain memory

on a remote rank locally available. In order to exchange data remote data can be read

from and written to by the local rank without the remote rank being involved. This

can improve the performance by reducing the total number and overhead introduced

by explicit calls to send and recv for each halo region.

• Neighborhood collectives: By default the various halo regions need to be sent of and

received individually. As an alternative it is possible to make use of neighborhood

collectives (MPI Ineighbor alltoallv) to exchange all the data at the same time.

Depending on the implementation and hardware in use this can result in further opti-

mized data movements.

The choice of the optimal optimization strategies is highly dependent on use case and

available hardware. Tausch provides the method testForBestCommunication to test all

possible strategies and their combinations to find the best choice. The result is returned as a

vector with two elements, the first one containing the value of the enum specifying the sending

communication strategy, and the second entry the enum for the receiving communication

strategy. It finds the best choice by performing halo exchanges for small and large problem

sizes and recording which ones perform better than the others. It is possible to specify the

range of problem sizes to test over in order to tune it for more specific applications.

A sample run of this test on a local machine with a single MPI rank returns the output as

shown in listing 2.1. As can be seen, and as one would intuitively expect, when on the same

1 ** Testing communication strategies

2
3 > Testing Default (send) / Default (recv) ... 18.3825 ms

4 > Testing Default (send) / DerivedMpiDatatype (recv) ... 18.1975 ms

5 > Testing Default (send) / MPIPersistent (recv) ... 18.4347 ms

6 > Testing TryDirectCopy (send) / TryDirectCopy (recv) ... 0.235729 ms

7 > Testing DerivedMpiDatatype (send) / Default (recv) ... 16.4172 ms

8 > Testing DerivedMpiDatatype (send) / DerivedMpiDatatype (recv) ... 15.6828 ms

9 > Testing DerivedMpiDatatype (send) / MPIPersistent (recv) ... 16.3059 ms

10 > Testing MPIPersistent (send) / Default (recv) ... 18.3637 ms

11 > Testing MPIPersistent (send) / DerivedMpiDatatype (recv) ... 17.9299 ms

12 > Testing MPIPersistent (send) / MPIPersistent (recv) ... 18.3672 ms

13 > Testing Collectives (send) / Collectives (recv) ... 20.1225 ms

14
15 ** Best strategy combo:

16
17 Sending: TryDirectCopy

18 Receiving: TryDirectCopy

19 Average time required: 0.235729 ms

20

Listing 2.1: Testing communication strategies on single MPI rank.

8

MPI rank the best choice for communication is to not go through MPI at all but simply copy

the data directly as both the sender and receiver share the same memory space. Re-running

this test on the same local machine but with multiple MPI ranks yields the slightly different

result shown in listing 2.2. In this case, running with 12 MPI ranks, making use of RMA

1 ** Testing communication strategies

2
3 > Testing Default (send) / Default (recv) ... 59.752 ms

4 > Testing Default (send) / DerivedMpiDatatype (recv) ... 56.5195 ms

5 > Testing Default (send) / MPIPersistent (recv) ... 52.6566 ms

6 > Testing DerivedMpiDatatype (send) / Default (recv) ... 51.6321 ms

7 > Testing DerivedMpiDatatype (send) / DerivedMpiDatatype (recv) ... 53.9124 ms

8 > Testing DerivedMpiDatatype (send) / MPIPersistent (recv) ... 50.9173 ms

9 > Testing MPIPersistent (send) / Default (recv) ... 52.6983 ms

10 > Testing MPIPersistent (send) / DerivedMpiDatatype (recv) ... 55.0589 ms

11 > Testing MPIPersistent (send) / MPIPersistent (recv) ... 50.4296 ms

12 > Testing RMA (send) / RMA (recv) ... 26.0214 ms

13 > Testing Collectives (send) / Collectives (recv) ... 55.0887 ms

14
15 ** Best strategy combo:

16
17 Sending: RMA

18 Receiving: RMA

19 Average time required: 26.0214 ms

20

Listing 2.2: Testing communication strategies on 12 MPI ranks.

for one-sided communication yields the fastest communication time.

This method by default prints its results to the screen, however, besides an MPI com-

municator as first argument the methods takes as second argument an optional boolean. If

that boolean is set to false then no output will be generated and the method simply returns

its result. This allows for calling this strategy finder during the setup stage of some code

without polluting the output log.

2.5 PERFORMANCE MODEL

In order to evaluate the performance of our new implementation we employ the max-rate

performance model [17],

T = tc + rα +
kn

min(RN , kRC)
(2.1)

where tc is the time for copying the data into/out of dedicated send/receive buffers, r is the

number of messages a rank is sending, α is the latency introduced by MPI per message, k

is the number of processes, n is the number of bytes sent per process, RN is the injection

bandwidth, and RC is the rate that can be achieved by each process in sending or receiving

a message. The values for α, RN and RC can be found in table 2.1, with the values obtained

9

through experiment. Note that RN only impacts the rendezvous protocol.

protocol α [s] RN [B/s] RC [B/s]

short 1.38× 10−6 — 3.81× 109

eager 2.26× 10−6 — 2.36× 109

rendezvous 1.14× 10−5 2.28× 109 1.77× 1010

Table 2.1: Max-rate model parameters for Lassen, obtained through experiment.

In order to compare the performance of Tausch to the performance model we consider a

test that performs a three-dimensional halo exchange. Figure 2.4 shows a visualization of this

halo exchange test in three dimensions, and algorithm 2.1 describes the actual algorithm that

is being used. The test code implementing this example is run on the Lassen supercomputer.

Figure 2.4: Visualization of three-dimensional halo exchange used as test case

We present a performance evaluation for test runs on both the CPU and the GPU. Note

that the only difference between those two is in the copying the halo data into their dedicated

send buffers, for the GPU test runs this involves calls to cudaMemcpy or hipMemcpy.

fig. 2.5 shows the comparison of the performance model and the test code. The colored

regions show the range of values (min/max) across all ranks, the lines show the average

timings. In order to get a handle on the average expected performance, the parameters

for the performance model are for inter-node communication (i.e., using the network) and

for copying only consecutive chunks of memory (without stride). Thus, the model will be

10

Algorithm 2.1: Algorithm of test code

1 Create data buffers
2 Compose halo information
3 n test ← number of tests
4 n timing ← number of timings per operation
5 for test←1, n test do
6 MPI Barrier

7 Start pack timer
8 for t←1, n timing do
9 Pack halo data to be sent off

10 into dedicated send buffer

11 end
12 Stop pack timer
13 Start communication timer
14 for t←1, n timing do
15 Send data off to neighbors
16 using MPI Isend

17 Receive data from neighbors
18 using MPI Irecv + MPI Wait

19 end
20 Stop communication timer
21 Start unpack timer
22 for t←1, n timing do
23 Unpack received halo data
24 out of dedicated receive buffer

25 end
26 Stop unpack timer

27 end

slightly too optimistic for memory copies, especially for the larger problem sizes. For the

smaller problem sizes data located at some stride still falls within one or just a few cache

lines resulting in a performance that is near ideal. On the other hand, the communication

prediction of the model is slightly pessimistic, ranks that lie on the same node and/or socket

will result in faster communication performance than the predicted performance. Overall,

the prediction by the performance model will be an average of the best and worst performance

between any two ranks.

The minimum values for the test runs are the fastest time for doing a halo exchange

between any two ranks, and likely stem from two ranks living on the same socket. Conversely,

the maximum values likely stem from two ranks living on different nodes that are far apart.

From the results we see that the modeled and actual performance closely align.

11

102 103 104 105 106 107

message size [bytes]

10−2

10−1

100

101
ti

m
e

[m
s]

CPU

test runs

performance model

102 103 104 105 106 107

message size [bytes]

10−2

10−1

100

101

ti
m

e
[m

s]

GPU

test runs

performance model

Figure 2.5: Performance Model on CPU using 320 ranks across 8 nodes (left) and GPU using
32 ranks across 8 nodes (right) running on Lassen.

2.6 RESULTS

We used our library in different applications exercising both the CPU and GPU aspects of

halo exchanges and compared its performance to the original code. The first two applications

come from the Mantevo mini application suite, HPCCG [18] and miniFE [19]. The CPU-

only application HPCCG is a simple conjugate gradient code that generates a 27-point finite

difference stencil for a 3D chimney domain on an arbitrary number of processors. The

slightly more recent mini application miniFE provides implementations of an unstructured

finite elements code for CPUs and GPUs on various architectures. Both mini applications

provide their own halo exchange implementations, both optimized to varying degrees. fig. 2.6

presents a comparison of that original implementation to a modified version that uses Tausch

to facilitate all required exchanges. As can be seen from fig. 2.6, Tausch on the CPU at least

matches if not outperforms the existing solution. This can be achieved without much effort

as Tausch requires typically no more than 4-5 lines (seldom more) to be used, whereas a

highly tuned existing halo exchange code requires many tens of lines of code and careful

design to not only actually achieve the desired performance but also minimize the risk of

accidental bugs introduced. On the GPU, Tausch is very close to the existing solution,

within much less than a factor of 2, up to matching the existing performance for the larger

problem sizes. The ease of use of Tausch and near-matching performance is a clear argument

in favor of using Tausch. It is worth pointing out that the use of Tausch in the CPU and

GPU version is nearly identical, with the only difference being the buffer pointers and the

enabling of CUDA-aware MPI (a single line of code).

In addition to the two mini application presented above, Tausch is also used within

Cedar [20], a robust, variational multigrid library implementing BoxMG on large scale par-

allel systems. There, it replaces a legacy halo exchange library (MSG [21]), for both the

12

105 106 107 108 109

global number of elements

10−4

10−3

10−2

ti
m

e
[s

]

HPCCG with Tausch

HPCCG, original

(a) HPCCG

106 107 108 109

global number of elements

10−1

100

101

ti
m

e
[m

s]

CPU

miniFE with Tausch

miniFE, hand-tuned

106 107 108 109

global number of elements

10−1

100

ti
m

e
[m

s]

GPU

miniFE with Tausch

miniFE, hand-tuned

(b) miniFE (CPU) (c) miniFE (GPU)

Figure 2.6: Tausch in HPCCG (a) and miniFE (b and c)

halo data itself and the associated stencil. fig. 2.7 shows the halo/stencil exchange oper-

ations inside Cedar for both the old implementation and our new library. Within Cedar,

Tausch provides structured communication for the solver in two and three dimensions. In

addition to providing performant halo communication with predictable performance, Tausch

enables parallel plane relaxation with coarse-grid problems redistributed on subcommuni-

cators. Prohibited in the past by the legacy communication library, Tausch supports many

non-interfering instances. This is used to create thousands of instances of Tausch for large

3D solves with minimal overhead [22]. Since at least around 30% of the time in Cedar is

spent in communication [23], this improvement leads to significant performance gains overall.

2.7 CONCLUSION

In this chapter we discussed techniques and novel ideas for halo exchanges targeting large

heterogeneous machines. We presented a new halo exchange library called Tausch, and

all the benefits it offers both in terms of performance but also ease of use. Measuring its

performance against a three dimensional performance model showed that its performance lies

13

106 107 108 109

global number of elements

10−3

10−2

ti
m

e
[m

s]

halo exchange

Cedar with Tausch

Cedar with MSG

106 107 108 109

global number of elements

10−2

10−1

ti
m

e
[m

s]

stencil exchange

Cedar with Tausch

Cedar with MSG

Figure 2.7: Tausch vs MSG in Cedar

within expectations. Using Tausch within the three sample applications HPCCG, miniFE,

and Cedar confirmed that result by illustrating the competitive performance exhibited by

Tausch by at least matching if not outperforming the previous performance of halo exchanges

by up to an order of magnitude.

14

CHAPTER 3: SMOOTHERS FOR THE STOKES EQUATIONS

Finite-element discretizations are a popular choice for coupled systems such as magneto-

hydrodynamics (MHD), or the Stokes or Navier-Stokes equations. Even though solvers for

finite-element discretizations of such saddle-point problems are well established, designing

efficient and scalable solvers on emerging computing architectures for such systems remains

an ongoing challenge [24–26].

In this chapter, we focus on preconditioned Krylov methods for the linear or linearized

systems of equations that arise in solving such problems. There are two main classes of pre-

conditioners for such systems: preconditioners based on block-factorization approaches [27–

29] and those based on monolithic multigrid principles [30, 31]. Within each class there is

considerable variability in their building blocks, such as the choice of relaxation scheme in

monolithic multigrid, including Braess-Sarazin [32, 33], Vanka [34], and Schur-Uzawa [35]

relaxation.

From existing studies [31, 36–38] some insight can be gained into which algorithms are

preferable in serial (low-performance) computing settings, but there are relatively few fair

comparisons of these approaches in literature [39–42], in particular for geometric multigrid

on modern architectures, such as GPUs. This is particularly important given changes in

prevailing HPC architectures in the past two decades. In [37, 43] it is observed that mono-

lithic multigrid with Vanka relaxation leads to scalable performance mathematically and

that additive variants of Vanka are well-suited for implementation on modern GPUs but, to

our knowledge, no performance studies support this claim. As we discuss below, one main

difficulty in getting good performance out of the Vanka algorithm is the high cost of memory

movement for forming the various Vanka patches and updating the global solution, which

requires a careful approach to achieve good performance. Similar issues have recently been

considered using related additive Schwarz relaxation schemes within multigrid applied to the

Poisson equation [44], where it was found that, with optimization of memory caching and re-

ducing communication between patches, additive Schwarz methods built around cell-centric

patches are capable of outperforming optimized point-Jacobi-based relaxation schemes.

More broadly, the parallel scalability of multigrid algorithms on modern architectures faces

many challenges related to indirection and increased coarse-grid communication costs [45,

46]. This makes data locality and the cost of data movement a central issue, but one that

can be solved by carefully exploiting structure in the problem as is done, e.g., in black box

multigrid (BoxMG) algorithms [23, 47, 48]. In this work, we use highly structured meshes

that allow us to encode various information about the data and how it is accessed in the

15

structure itself, similarly to the BoxMG paradigm. Notably, we work with a structured

matrix representation and implement algorithms that take full advantage of this, in order to

minimize memory accesses and maximize floating point operations (arithmetic intensity).

In this chapter, we first introduce the Stokes equations as our model problem and pro-

vide an overview of their structure and resulting discretization. We then introduce two

different preconditioners for the FGMRES algorithm used to solve such equations, mono-

lithic multigrid and the upper Block-Triangular preconditioner. For monolithic multigrid,

we introduce three different relaxation schemes, Braess-Sarazin, Vanka, and Schur-Uzawa.

As Braess-Sarazin and Vanka are two common choices for relaxation schemes, we focus our

performance analysis on these, noting that Schur-Uzawa can be implemented with the same

kernels as Braess-Sarazin. After illustrating which kernels are the biggest contributors to

each algorithm, we then break the performance analysis into two parts: common kernels

(matrix-vector and array operations) and Vanka-specific kernels (forming patches, updating

the global solution, solving patch systems). For each part, the arithmetic intensity, perfor-

mance, and runtime are analyzed in order to gain a full understanding of the algorithms and

how they compare. This leads to a roofline model to investigate how much better the kernels

could be doing, if at all. To finish our performance analysis, we compare a full solve of the

Stokes equations using FGMRES preconditioned with both a Block-Triangular precondi-

tioner and a multigrid V-cycle preconditioner with Braess-Sarazin, Vanka, and Schur-Uzawa

as relaxation schemes. We show that Vanka is, indeed, a competitive algorithm on modern

architectures with careful design. We also show that simply porting a performant CPU

implementation of Vanka directly to the GPU is not sufficient for achieving competitive

performance.

3.1 THE STOKES EQUATIONS AND THEIR DISCRETIZATION

3.1.1 Problem Setup

Fluid flow where viscous forces are much greater than advective inertia is called Stokes

flow. In nature, flow with such properties occurs in many places, e.g., in geodynamics or

in the swimming movement of microorganisms. The equations of motions arising from this

flow are called the Stokes equations and can be viewed as a simplification of the steady-state

Navier-Stokes equations in the limit of small Reynolds number, Re≪ 1. They are not only

well-suited to be solved by iterative solvers [49], but they also serve as a suitable prototype

for a wide range of models that lead to saddle-point structure.

Specifically, we consider the incompressible Stokes equation with constant viscosity ν in

16

the unit-square domain Ω = [0, 1]2 ∈ R2. The equations are given by

−ν∇2u+∇p = f , (3.1)

∇ · u = 0. (3.2)

Dirichlet boundary conditions on velocity are enforced on all edges of the domain, but no

boundary conditions are imposed on pressure. Here, we consider no-flux boundary condi-

tions,

u · n = 0 on ∂Ω, (3.3)

where n is the outward pointing normal vector. Thus, we define the Hilbert space H1
0(Ω) as

H1
0(Ω) = {v ∈ H1(Ω) : v · n = 0 on ∂Ω} (3.4)

and L2(Ω)/R as the quotient space of equivalence classes of functions in L2(Ω) differing by

a constant. The weak form is then defined as: Find (u, p) ∈ H1
0(Ω)× L2(Ω)/R such that

a(u,v) + b(v, p) = (f ,v) ∀v ∈ H1
0(Ω) (3.5)

b(u, q) = 0 ∀q ∈ L2(Ω)/R (3.6)

where

a(u,v) = ν

∫
Ω

∇u : ∇v, (3.7)

b(v, p) =

∫
Ω

p∇ · v. (3.8)

We work with a manufactured solution [42, 50] that satisfies the properties above, given by

u(x, y) =

x(1− x)(2x− 1)(6y2 − 6y + 1)

y(y − 1)(2y − 1)(6x2 − 6x+ 1)
(3.9)

p(x, y) = x2 − 3y2 +
8

3
xy, (3.10)

with f computed to satisfy (3.1). A visualization of this solution is found in fig. 4.2.

17

0 1
0

1

u1
0 1u2

0 1p

−0.05 0 0.05 −0.05 0 0.05 −3 −2 −1 0 1

Figure 3.1: Visualization of three components of the manufactured solution.

3.1.2 Discretization

We consider the standard Q2–Q1 Taylor-Hood mixed finite-element discretization on a

uniform grid for discretizing the system in eqs. (3.1) and (3.2). For the velocity, this uses Q2

elements, with biquadratic polynomials for each component on each element as a basis. For

the pressure, this uses Q1 elements, with bilinear polynomials on each element as a basis.

Both velocities and pressures are required to be continuous across element boundaries. An

illustration of the degrees of freedom in these elements is shown in fig. 3.2. The resulting Q2

(a) Q2 element (b) Q1 element

Figure 3.2: Illustration of the degrees of freedom for a Q2 and Q1 element, with different
types of degrees of freedom identified by different shapes.

and Q1 elements have a total of nine and four degrees of freedom per element, respectively.

Such a discretization of the Stokes equations directly relates back to the weak form as shown

18

in eqs. (3.5) and (3.6), defining the matrices L and B by

Li,j = a(ψj,ψi) (3.11)

Bk,j = b(ψj, ϕk). (3.12)

It is important to note that the introduction of a basis gives us two “views” on the finite-

element approximations, writing u =
∑

i uiψi and p =
∑

k pkϕk, so we can consider the

functions u and p directly, or think about their coefficients in the basis expansion, {ui}
and {pk}. In what follows, we follow the usual convention of overloading the notation u

and p to denote both the functions themselves and the vectors of basis coefficients, with

the distinction typically clear from context, in that Lu is the matrix acting on the basis

coefficients, while a(u,v) is the bilinear form evaluated on the function. With this matrix

representation, the solution of the weak form can be expressed as that of the linear system[
L BT

B 0

][
u

p

]
=

[
f

0

]
(3.13)

where L is the discretized Laplacian, B and BT are the discretized divergence of u and

gradient of p, respectively, u and p are the discretized velocity and pressure components of

the solution, and f is the velocity component of the right-hand side. In what follows, to save

space, we will write the 2× 2 block matrix in eq. (3.13) as A.

Such a system is challenging to solve, as it is symmetric but indefinite due to the zero block

in the lower right-hand corner of the system matrix. This causes many common iterative

methods (e.g., simple stationary methods like Jacobi and Gauss-Seidel) to not work as they

typically involve inverting the diagonal of the system matrix. Study of numerical methods

for solution of such saddle-point systems is a well-established discipline [28]. One possi-

ble solution to these challenges is the use of block preconditioners, based on the block LU

factorization of the coupled system. This approach has been well-developed for discretiza-

tions of the Stokes equations [27, 28]. However, existing studies [42] suggest that monolithic

preconditioners can be more efficient. Thus, we also consider monolithic multigrid as pre-

conditioner for FGMRES. We note that monolithic multigrid preconditioners are generally

not symmetric and positive definite and, so, they cannot be used directly as preconditioners

for MINRES; however, the added computational work for orthogonalization in FGMRES is

more than made up for by the quick convergence of the monolithic multigrid approach.

19

3.1.3 Structured Matrix Representation

Any iterative solver naturally depends on calculations of matrix-vector products for the

block-structured matrix in eq. (3.13). In general, such calculations require indirect address-

ing, when arbitrary numbers of elements can be adjacent to each node of the mesh, leading

to irregular communication patterns. However, when we restrict the mesh to have logi-

cally rectangular structure (meaning that each node is at the intersection of four edges,

and is adjacent to four elements), then applying the discretization matrix can be done in a

stencil-wise fashion, where each degree of freedom requires information from at most a 2× 2

element patch. This allows storing the system matrices in a highly efficient data structure

by numbering the degrees of freedom in lexicographic order. For the Q1 discretization, this

ordering is natural, since the only degrees of freedom occur at the nodes in the mesh, that

can be labeled lexicographically by (x, y)-indices. For the Q2 discretization, we separate the

degrees of freedom into four sets, given by those associated with the nodes of the mesh, then

those at midpoints of the x and y edges, and, finally, those associated with the cell centers.

Figure 3.3 shows a local numbering of those degrees of freedom on the 2 × 2 patch around

a node.

1 2 3

4 5 6

7 8 9

10 11

12 13

14 15

16 17 18

19 20 21

22 23

24 25

Figure 3.3: Local numbering of degrees of freedom around nodal degree of freedom 5.

With this ordering, the system matrix is stored as an array of arrays, where the first

(outer) array index corresponds to the row in the matrix associated with that degree of

freedom, and the inner arrays stored at each outer index contain a fixed number of entries

corresponding to the number of degrees of freedom surrounding the respective degree of

freedom, with the respective columns implicitly stored by the positions in the inner array.

20

Thus, the inner arrays have a fixed length of 9 for Q1 elements and a fixed length of 25 for the

nodal degree of freedoms for Q2 elements (with the ordering given in fig. 3.3). Such a matrix

format corresponds to a hybrid of the ELLPACK and the SELL-n matrix formats [51, 52],

as we use padding to always store the full stencil and, thus, have a consistent row length,

but we also use a (variable) block size n with each type of degree of freedom forming its

own block. Exploiting the structure of our setup enables us to avoid having to store any

indices or pointers, as this information is encoded in the structure itself. Thus we are able

to minimize the memory storage needed and maximize the performance, as only a small

amount of memory needs to be loaded and read for any operation. fig. 3.4 illustrates how

the matrix entries for the different types of degrees of freedom are stored in memory, with

each box corresponding to one inner array.

node nn: 1 2 . . . 25

...

node 1: 1 2 . . . 25

node 0: 1 2 . . . 25

x-edge nx: 1 2 . . . 15

...

x-edge 1: 1 2 . . . 15

x-edge 0: 1 2 . . . 15

y-edge ny: 1 2 . . . 15

...

y-edge 1: 1 2 . . . 15

y-edge 0: 1 2 . . . 15

center nc: 1 2 . . . 9

...

center 1: 1 2 . . . 9

center 0: 1 2 . . . 9

Figure 3.4: Illustration of how matrix entries are stored in memory for the four different
groups of degrees of freedom.

This approach translates directly to higher dimensions. For a 3D discretization of this

type on “brick” elements, we would extend the above to 2 × 2 × 2 element patches with

21

5 × 5 × 5 = 125 nodal degrees of freedom (5 in each dimension). These can be labeled in

an analogous way and, consequently, stored similarly in a single array of arrays, with outer

index corresponding to the rows in the system matrix, and inner index corresponding to the

local numbering around each degree of freedom.

3.2 MULTIGRID

Multigrid methods are based on the notion that standard (but slow-to-converge) iterative

methods are generally effective at reducing oscillatory errors in a discrete approximation,

but that the subspace of smooth and slow-to-converge errors of such an iteration is better

treated by a complementary process [53, 54]. A natural approach to reduce the smooth

errors is with correction from a coarser-grid realization of the same discretized problem,

where those smooth modes can be accurately resolved by recursively applying the same

iterations to problems with fewer degrees of freedom, until some suitably coarse version of

the problem is found where a sparse direct solver can be effectively applied. For higher-order

discretizations and systems of PDEs, such an error classification breaks down [55], but the

multigrid principle remains effective, in that we can define relaxation schemes that effectively

damp a large portion of the error in a given approximation, and the remaining error can be

effectively corrected from a coarse grid.

The standard multigrid solution algorithm is known as the V-cycle, since it traverses a

given hierarchy of meshes from the given finest grid to the coarsest, then back to the finest.

In the “downward” sweep of the traversal (from fine-to-coarse), on each level, an initial

approximation (generally a zero vector) is improved by a specified relaxation scheme. Then,

the residual associated with that improved approximation is calculated and restricted to

the next coarsest grid, where the scheme recurses. On the “upward” sweep, the current

approximation is improved by interpolating a correction back from the next coarser grid,

then running relaxation again, before proceeding to the next finer grid. For transferring

residuals and corrections between grids, we define a single interpolation operator that maps

from a coarse grid to the next finer grid, and use its transpose as a restriction operator. In

this work, we follow the standard geometric multigrid approach of using the finite-element

interpolation operators, that naturally map from coarse-grid versions of the Q2 and Q1 spaces

to their fine-grid analogues. Algorithm 3.1 presents an algorithmic overview of the multigrid

V-cycle for the Stokes equations, following the convention that level 0 is the coarsest grid in

the hierarchy, and we are interested in the solution on some given fine grid, for fixed l > 0.

While traditional relaxation schemes, such as (weighted) Jacobi or Gauss-Seidel are effec-

tive for elliptic problems, they generally cannot be applied directly to saddle-point systems,

22

Algorithm 3.1: Multigrid V-cycle for Stokes equations

1 function MG(Al, ul, pl, f l, gl, l):
2 Relax on ul and pl

3 Compute residual:

[
ru,l
rp,l

]
=

[
f l
gl

]
− Al

[
ul

pl

]
4 Restriction:

[
ru,l−1

rp,l−1

]
= P T

l−1

[
ru,l
rp,l

]
5 if l is 1 then

6

[
eu,0
ep,0

]
= A−1

0

[
ru,0
rp,0

]
7 else

8

[
eu,l−1

ep,l−1

]
= MG(Al−1,0, 0, ru,l−1, rp,l−1, l − 1)

9 end

10 Correction:

[
ul

pl

]
=

[
ul

pl

]
+ Pl−1

[
eu,l−1

ep,l−1

]
11 Relax on ul and pl

due to the zero block in the matrix. Thus, specialized relaxation schemes are commonly

developed and analyzed for the Stokes equations. In this work, we consider four different

preconditioning approaches, comparing monolithic multigrid with Braess-Sarazin [32, 33],

Vanka [34], and Schur-Uzawa [35] relaxation with an upper Block-Triangular preconditioner.

We focus in particular on the former two, Braess-Sarazin and Vanka, as these are known to

lead to effective monolithic multigrid methods, but also expose key kernels that are reused

in the implementation of the latter two. We next provide an overview of all four algorithms,

before focusing on aspects of implementation and performance when implementing these

approaches on the GPU.

3.2.1 Braess-Sarazin Relaxation Scheme

The Braess-Sarazin iteration is based on an approximation of the block factorization of

the system matrix in (3.13),[
L BT

B 0

]
=

[
L 0

B Ŝ

][
I L−1BT

0 I

]
, (3.14)

for Ŝ = −BL−1BT . The original algorithm [32] proposed replacing the matrix, L, in the

above by a scaled version of its diagonal, tD, for scalar t, and updating the current approx-

23

imation by an under-relaxed solve of the saddle-point system with this replacement,[
u

p

]new
=

[
u

p

]old
+ ωBS

[
tD BT

B 0

]−1 [
ru

rp

]old
(3.15)

where ru and rp are the respective residuals. For simplicity, we fix ωBS = 1 in what fol-

lows. This is equivalent to computing the (unweighted) updates, δu and δp, as approximate

solutions of the block-factorized approximation to the system matrix,[
tD 0

B S

][
I 1

t
D−1BT

0 I

][
δu

δp

]
=

[
ru

rp

]
(3.16)

where S = −1
t
BD−1BT is the Schur complement of the approximated system. Equa-

tion (3.16) can be rewritten as two equations

Sδp = rp −
1

t
BD−1ru, (3.17)

δu =
1

t
D−1(ru −BT δp). (3.18)

The inexact variant of Braess-Sarazin [33] only approximately computes the solution to eq. (3.17),

using standard weighted Jacobi (or other algorithms) to approximate the inverse of S (see

also [56]. The full algorithm is given in algorithm 3.2.

Algorithm 3.2: Braess-Sarazin relaxation

1 Approximately solve Sδp = rp − 1
t
BD−1ru for δp by relaxation.

2 Compute δu = 1
t
D−1(ru −BT δp).

3 Update pnew = pold + ωBSδp.
4 Update unew = uold + ωBSδu.

3.2.2 Vanka Relaxation Scheme

Vanka relaxation, in contrast, applies a block overlapping Schwarz iteration to the global

saddle-point system. In this approach, we define sets of “patches” (or “subdomains” in

the usual Schwarz notation) corresponding to 2 × 2 blocks of elements, where we take a

single pressure degree of freedom at the central vertex and all velocity degrees of freedom

on the associated (neighboring) elements, see fig. 3.5. For each patch, we define a restriction

operator, Vi, that extracts degrees of freedom from the global matrix to those present on

24

local patch i, and use this to restrict the system matrix to the ith patch, as

Ai = ViAV
T
i (3.19)

The Vanka algorithm is defined by looping over the patches and solving

Ai

[
δui

δpi

]
= Vi

[
ru

rp

]
(3.20)

exactly for δui and δpi, which are then used to update the global approximate solution in

a weighted additive manner. The Vanka algorithm is given in algorithm 3.3. We note that

Figure 3.5: Illustration of overlapping 2× 2 Vanka patches

we solve the patch systems exactly by inverting each patch matrix ahead of time, as they

do not change between iterations.

Algorithm 3.3: Vanka relaxation (additive)

1 for i← 1 to N do

2 Solve Ai

[
δui

δpi

]
= Vi

[
ru
rp

]
for

[
δui

δpi

]
.

3 end

4 Update

[
unew

pnew

]
=

[
uold

pold

]
+ΣN

i=1V
T
i Wi

[
δui

δpi

]
where Wi is the matrix with the weights.

25

3.2.3 Schur-Uzawa Relaxation Scheme

The Schur-Uzawa iteration is derived in a similar way to the Braess-Sarazin iteration. It

is again based on an approximation of the factorization of the system matrix in (3.13),[
L BT

B 0

]
=

[
L 0

B Ŝ

][
I L−1BT

0 I

]
, (3.21)

for Ŝ = −BL−1BT . As in Braess-Sarazin, we again replace the matrix, L, by some approx-

imation that is easy to invert, again denoted tD, but also drop the upper-triangular term

from this factorization, resulting in an inexact system computing updates, δu and δp, as

approximate solutions of the block system,[
tD 0

B Ŝ

][
δu

δp

]
=

[
ru

rp

]
. (3.22)

The system in (3.22) can be rewritten as two equations

tDδu = ru (3.23)

Sδp = Bδu− rp (3.24)

that are solved for δu by directly inverting tD and for δp by standard weighted Jacobi to

approximate the inverse of S = −1
t
BD−1BT . The full algorithm is given in algorithm 3.4.

Algorithm 3.4: Schur-Uzawa relaxation

1 Compute δu = 1
t
D−1ru.

2 Approximately solve Sδp = Bδu− rp for δp by relaxation.
3 Update pnew = pold + δp.
4 Update unew = uold + δu.

3.2.4 Block-Triangular Preconditioner

The Block-Triangular preconditioner is also based on an approximation of the system

matrix in (3.13), but we now consider an alternate form with unit block diagonal for the

lower-triangular factor, [
L BT

B 0

]
=

[
I 0

BL−1 I

][
L BT

0 Ŝ

]
, (3.25)

26

with Ŝ = −BL−1BT . While Braess-Sarazin and Schur-Uzawa relaxation use simple approx-

imations to L and Ŝ to approximate the inverse for relaxation within a multigrid cycle, it is

more common to use multigrid on the blocks when using the block preconditioner directly.

Here, as is common [27], we first approximate Ŝ by a mass matrix, −M , on the pressure

space, then apply multigrid to this approximation. With this, we compute updates, δu and

δp, as approximate solutions of the upper-triangular approximation to the system matrix,[
L BT

0 −M

][
δu

δp

]
=

[
ru

rp

]
, (3.26)

using multigrid V-cycles to approximately invert L and M . The system in (3.26) can be

rewritten as two equations

−Mδp = rp (3.27)

Lδu = ru −BT δp, (3.28)

leading to the full algorithm given in algorithm 3.5.

Algorithm 3.5: Block-Triangular preconditioner

1 Approximately solve Mδp = −rp for δp using multigrid on M .
2 Approximately solve Lδu = ru −BT δp for δu using multigrid on L.
3 Update pnew = pold + δp.
4 Update unew = uold + δu.

3.3 OUR IMPLEMENTATION

We have implemented the outer FGMRES iteration and a multigrid V-cycle with the three

relaxation schemes, Vanka, Schur-Uzawa, and Braess-Sarazin, as well as the Block-Triangular

preconditioner, in C++, with custom data structures that provide structured matrix imple-

mentations of the required matrix and vector operations, as discussed above. This is achieved

by using operator overloading to allow the optimization of the code for different architec-

tures while preserving a clean implementation of the high-level algorithms. Underlying the

custom data structures are standard STL vectors of double data type. Additionally, support

for CUDA and OpenCL requires only a switch of the backend implementation while the

high-level algorithm implementation remains largely untouched.

The resulting implementation yields an efficient solution algorithm for the incompressible

27

Stokes equations in two dimensions on both the CPU and the GPU. We limit our attention

to optimizing implementations for a single CPU node or single GPU and focus on comparing

performance using the different algorithms, taking advantage of the underlying structure.

In principle, similar performance is expected for other discretizations of Stokes and other

saddle-point problems, in two and three dimensions, but studying performance in these

contexts is left for future work. We also do not consider extending this work to MPI-based

parallelism or multi-GPU systems.

3.4 EXISTING WORK

John and Tobiska [57] investigate the performance of multigrid paired with Braess-Sarazin

for solving the Stokes equations using P1-P0 finite elements. In the case of a W-cycle,

the improvement in error reduction is approximately linear with the number of smoothing

steps. For a V-cycle, convergence increases in general with increasing level of refinement.

The work shows that multigrid paired with Braess-Sarazin is indeed a robust and reliable

preconditioner.

Larin et al. [58] compares use of a coupled multigrid method with Vanka and Braess-

Sarazin type relaxation schemes, along with preconditioned MINRES and an inexact Uzawa

method. The focus is on solving the Stokes equations on the then-current hardware and

architectures. The results show that all four methods are robust with respect to variations

in parameters. The conclusion is that a multigrid W-cycle paired with diagonal Vanka results

in the most efficient solver in terms of CPU time.

More recently, Adlet et al. [42] compare of a fully-coupled monolithic multigrid paired

with Braess-Sarazin or Vanka as relaxation scheme, and a block-factorization preconditioner

similar to the one we presented here. On CPU-only systems, multigrid paired with Vanka

results in the best scaling and lowest iteration count. Yet, these solvers require significantly

more work per iteration than the other preconditioners. As a result, multigrid paired with

Braess-Sarazin yields the best time-to-solution on CPUs for the problems studied in that

work.

3.5 PERFORMANCE ANALYSIS

By far the most costly component of the monolithic multigrid-preconditioned FGMRES

solver is the relaxation scheme within the multigrid V-cycle. Thus, we focus our performance

analysis on the implementations of two of the relaxation schemes, Vanka and Braess-Sarazin,

28

alone, noting that multigrid with Schur-Uzawa relaxation reuses only components from that

using Braess-Sarazin, while the Block-Triangular preconditioner also reuses primarily kernels

from Braess-Sarazin relaxation as well.

Studying the performance of these methods requires careful analysis of memory move-

ment and access. The standard metric for this is arithmetic intensity, which quantifies

the relationship between floating-point operations and memory reads and writes. Another

important quantity is the FLOP rate, which describes how many floating-point operations

are performed in a given time frame. The runtime of the kernels (and how they relate to

one-another) indicates the importance of each kernel when it comes to studying the perfor-

mance. We first study and optimize the component kernels individually, before comparing

performance of our four preconditioners for the FGMRES solver for the Stokes equations.

For measuring the various metrics to evaluate and compare implementations on the GPU,

we use NVIDIA’s Nsight Compute1 and Nsight Systems2 software.

3.5.1 Test System

The system we use for each test is the Delta supercomputer3 located at the National

Center for Supercomputing Applications (NCSA). It is equipped with NVIDIA A100 GPUs

that have a measured peak double-precision floating-point performance of 9472.34 GFLOP/s,

80GB on-chip memory, and a measured GPU memory bandwidth of 1264.42 GB/s, measured

using the CS roofline toolkit4. For our final comparison of algorithms, we also run on the

CPU nodes of the Delta supercomputer, that carry dual 64-core AMD 7763 processors with

a base frequency of 2.45 GHz (max boost frequency of 3.5 GHz) and a per socket memory

bandwidth of 204.8 GB/s, although we only consider serial runs on a single core here.

3.5.2 Kernels

To start the analysis of the different kernels, we first present an overview of each kernel

and get a sense of how much they contribute to the overall runtime. Although the problem

itself and the final parameter choices can have an important impact on the performance of

a kernel, we compare kernels for a generic case here to provide a baseline.

Algorithm 3.6 shows the Braess-Sarazin algorithm in slightly different form than algo-

rithm 3.2, to focus on the kernels involved for the various steps. These kernels are color-coded

1NVIDIA Nsight Compute: https://developer.nvidia.com/nsight-compute
2NVIDIA Nsight Systems: https://developer.nvidia.com/nsight-systems
3Delta supercomputer: https://delta.ncsa.illinois.edu/
4CS Roofline Toolkit: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

29

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://delta.ncsa.illinois.edu/
https://bitbucket.org/berkeleylab/cs-roofline-toolkit

for ease of comparing with the cost breakdown for a single iteration of Braess-Sarazin shown

in fig. 3.6, indicating how much each kernel contributes to the overall runtime. (Noting that

the percentages may not sum to 100%, due to rounding.) As is seen (and expected), most of

the runtime is consumed by the matrix-vector operations. Many of these kernels are reused

in the other solvers. We note in particular that the weighted Jacobi kernel for the pressure

solve, used both for Braess-Sarazin and Schur-Uzawa relaxation (and in the Block-Triangular

preconditioner) contributes very little to the overall runtime (less than 2%).

Algorithm 3.6: Braess-Sarazin with kernel breakdowns

1 Compute current residuals, ru and rp.
Q2 matrix * Q2 vector
Q2Q1 matrix * Q2 vector
Q2Q1 matrix * Q1 vector
array operations

2 Form right hand side of eq. (3.17).
Q2 matrix * Q2 vector
Q2Q1 matrix * Q2 vector
array operations

3 Use Jacobi to compute approximation of δp in eq. (3.17).
weighted Jacobi

4 Use δp to compute δu in eq. (3.18).
Q2 matrix * Q2 vector
Q2Q1 matrix * Q1 vector
array operations

5 Update global solution with δu and δp.
array operations

55.4%

16.5%
14.7%

11.9%

1.4%

Q2 matrix ∗ Q2 vector

Q2Q1 matrix ∗ Q1 vector

Q2Q1 matrix ∗ Q2 vector

array operations

weighted Jacobi

Figure 3.6: Braess-Sarazin: Kernels and their proportion of runtime

A similar kernel-focused restatement of algorithm 3.3 is given in algorithm 3.7, with the

various kernels color-coded to correspond to timing breakdown for a single iteration shown

in fig. 3.7. The left figure in fig. 3.7 shows the runtime for what we call “simple Vanka”,

where we do not take advantage of the fact that, for many settings, the Vanka submatrices

are identical for most patches and can, thus, be stored once and used many times. This

approach results in more than 75% of the runtime being spent applying the patch matrix

inverses as each patch needs to load its own Vanka submatrix from global memory. The right

figure in fig. 3.7 shows the results using a “tuned Vanka” implementation, where patches

that have identical submatrices take advantage of fast shared memory to optimize memory

30

Algorithm 3.7: Vanka (tuned) with kernel breakdowns

1 Compute current residuals, ru and rp.
Q2 matrix * Q2 vector
Q2Q1 matrix * Q2 vector
Q2Q1 matrix * Q1 vector
array operations

2 Form patch right hand sides of eq. (3.20)
Q2 matrix * Q2 vector
Q2Q1 matrix * Q2 vector
Q2Q1 matrix * Q1 vector
array operations
form right hand side

3 Apply inverses of patch matrices to patch right hand sides.
apply matrix inverse (int)
apply matrix inverse (ext)

4 Update global solution.
update global solution

81.7%

7.0%

4.8%

3.5%
1.5%

apply matrix

form patches

update solution

Q2 matrix ∗ Q2 vector

Q2Q1 matrix ∗ Q1 vector

Q2Q1 matrix ∗ Q2 vector

array operations

(a) simple Vanka

25.0%24.9%

16.5%

12.6%
10.2%

5.3%

4.0%
1.5%

form patches

apply matrix (int)

update solution

Q2 matrix ∗ Q2 vector

apply matrix (ext)

Q2Q1 matrix ∗ Q1 vector

Q2Q1 matrix ∗ Q2 vector

array operations

(b) tuned Vanka

Figure 3.7: Vanka: Kernels and their proportion of runtime, both (a) simple and (b) tuned
Vanka.

accesses and, in turn, improve performance. For a uniform grid as considered here, fig. 3.8

sketches the grouping of patches into those that have a submatrix in common. Here, there

are special cases for patches adjacent to the edges or corners of the mesh, including those

associated with nodes on the boundary and those distance one from the boundary (where

some degrees of freedom in the patch have Dirichlet boundary conditions applied), and a

general case for all patches at nodes at least distance two from the boundary. This approach

results in only about 40% of the overall runtime being taken up by applying patch matrix

inverses. In total, just over three quarters of the runtime in the tuned approach is used for

the four unique-to-Vanka operations. The other portion is contributed by the same simple

matrix-vector operations as in the analysis of Braess-Sarazin. In what follows, we focus

on tuned Vanka in our performance analysis and show a comparison of tuned and simple

Vanka as part of our final comparison of relaxation schemes within multigrid-preconditioned

FGMRES.

31

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17

18

19 20 21 22

23

24

25

Figure 3.8: Vanka: groups of shared patch matrices

3.5.3 Vanka Patch Matrices

GPUs are built around multithreaded streaming multiprocessors. Whenever a kernel is

launched from the host, all threads are grouped together into smaller thread blocks, which are

then enumerated and distributed to available multiprocessors. All threads within a thread

block are executed concurrently, and all blocks can be executed concurrently. Threads within

a block are able to access local shared memory and can be synchronized. Additionally, all

threads are able to access global memory. Choosing the right size of block is essential for

good performance, as a too small block size leads to streaming multiprocessors that remain

partially idle, whereas a too large block size leads to an imbalanced load over all of the

streaming multiprocessors. CUDA is designed with a maximum of 1024 possible threads per

thread block.

Making use of shared and local memory as much as possible within a CUDA thread block

allows us to optimize memory accesses further, as data that is used repeatedly can be cached

in memory that is faster than global memory. This is of particular importance for the Vanka

algorithm, as many of the Vanka patches share the same patch matrices, as discussed above.

In total, there are 25 different patch matrices, as depicted in fig. 3.8, for a constant-coefficient

Stokes problem on a uniform mesh, independent of the number of elements. The shaded

orange areas in fig. 3.8 denote single patches that have their own unique patch matrix. The

normal orange areas are one-dimensional areas along element edges that share the same patch

matrix, and the green area is the two-dimensional interior region of the domain, where all

patches share the same submatrix. Within any one of these regions, we can load the patch

matrix into shared memory once, to be used by all threads in the block.

32

kernel reads writes flops

Q2 array plus/minus array 2n n n
Q2 array times scalar n+ 1 n n
Q2 matrix ∗ Q2 vector 50 + 160ℓ+ 128ℓ2 n 25 + 80ℓ+ 64ℓ2

Q2Q1 matrix ∗ Q2 vector 50 + 100ℓ+ 50ℓ2 m 25 + 50ℓ+ 25ℓ2

Q2Q1 matrix ∗ Q1 vector 18 + 60ℓ+ 50ℓ2 n 9 + 30ℓ+ 25ℓ2

Braess-Sarazin: weighted
Jacobi

2m+ 1 m 2m

Vanka: Form Patch RHS 51 + 102ℓ+ 51ℓ2 51 + 102ℓ+ 51ℓ2 0
Vanka: Apply matrix in-
verse

2652 + 5304ℓ +
2652ℓ2

51 + 102ℓ+ 51ℓ2 2601 + 5202ℓ +
2601ℓ2

Vanka: Update global so-
lution

52 + 104ℓ+ 52ℓ2 52 + 104ℓ+ 52ℓ2 52 + 104ℓ+ 52ℓ2

Table 3.1: Theoretical reads [double], writes [double] and flops of the various operations with
ℓ+ 1 as the number of nodal degrees of freedom in one dimension, n as the total number of
velocity degrees of freedom, and m as the total number of pressure degrees of freedom.

3.5.4 Arithmetic Intensity

The arithmetic intensity of a kernel is defined as the ratio of how many floating point

operations (flops) are performed per byte read/written. The algorithms for both Vanka and

Braess-Sarazin involve various general vector and matrix-vector operations. In addition,

Braess-Sarazin requires a weighted Jacobi application, and Vanka requires operations to

extract the current residuals, to apply the patch matrix inverses, and to update the global

solution. Table 3.1 denotes the counts of all reads, writes, and floating points operations

(flops) for the various kernels, obtained by counting the operations in the algorithms. Note

that the Q1 array operations are similar to the Q2 array operations leading to equivalent

arithmetic intensity and performance values.

Based on the values in table 3.1, we compute the arithmetic intensity of the various kernels.

On the GPU (using CUDA), we use the following formula,

AI =
flops

32(sectors read + sectors written)
. (3.29)

where the reads and writes are counted per sector. One sector consists of a total of 32 bytes

and, thus, we multiply by that constant in order to recover the byte count. The performance

33

kernel AI performance

array plus/minus array 0.0417 52.684
array times scalar 0.0625 79.026

Q2 matrix ∗ Q2 vector 0.0606 76.633
Q2Q1 matrix ∗ Q2 vector 0.0613 77.477
Q2Q1 matrix ∗ Q1 vector 0.0578 73.175

Braess-Sarazin: Jacobi 0.0833 105.368
Vanka: Form Patches 0.0 0.0
Vanka: Apply matrix 0.120 152.088
Vanka: Update solution 0.125 157.744

Table 3.2: Theoretical AI [flops/byte] and performance [GFLOP/s], calculated for a 512×512
element patch.

of each operation is then computed by

perf =
flops

max
(

32(sectors read + written)
bandwidth

, flops
peak perf

) (3.30)

The theoretical arithmetic intensity and performance computed this way is shown in ta-

ble 3.2. This analysis, however, has its limitations. In practice, we expect the actual arith-

metic intensity and performance to be better, as values are typically not read from or written

to memory one-by-one. Instead, a memory range is typically loaded all at once, allowing us

to reuse values. Additional strategies, like using shared memory for Vanka patches with the

same patch matrix, further optimize the memory accesses, increasing both the arithmetic

intensity and performance. Similarly, varying the size of CUDA blocks also has an effect on

these quantities.

3.5.5 Common Kernels

For simplicity, we group the kernels into two classes. First, we examine those kernels that

are common to both Vanka and Braess-Sarazin relaxation, involving matrix-vector products

and array operations. Following this, we analyze the Vanka-specific kernels.

The common kernels are listed at the top of fig. 3.9, where we break down the matrix-

vector products producing Q2 vectors into those that compute values at the nodes, denoted

by n, the x- and y-edge midpoints, denoted by x and y, respectively, and the cell centers,

denoted by c. The color-coding of these kernels matches that in fig. 3.6. For these kernels,

we can choose the CUDA block size in an attempt to improve performance. Figure 3.9 shows

34

how the arithmetic intensity, performance, and runtime vary for the various common kernels

with varying CUDA block size.

We first note that the measured arithmetic intensities are indeed better than the theo-

retical values described in table 3.2, albeit generally not far off. Additionally, the measured

arithmetic intensity does not vary much (or at all) with varying CUDA block size. This is due

to the nature of the underlying memory operations, as the structured matrix data structures

used here already optimize the loading and writing of memory. Due to the global nature

of the kernels, they are not able to take advantage of shared memory on the GPU. The

performance and runtime, however, are impacted by the CUDA block size, with increases

in the performance leading to decreases in runtime. Over all results, we see differences in

performance of up to a factor of 5 as we vary the block size. Choosing the best overall

parameter comes down to selecting the best block size for the kernels that contribute the

most to each algorithm.

For Braess-Sarazin, the Q2 matrix by Q2 vector multiplication makes up more than 50%

of the overall runtime and, thus, choosing the best parameter for the 4 kernels within this

operation has the largest impact on the overall runtime of the algorithm. For both problem

sizes, the best (or near-best, within 2% of the best) runtime for these 4 kernels is achieved

for a CUDA block size of 12× 12. Analyzing the other common kernels yields a very similar

picture. Thus, all of the common kernels achieve peak (or near-peak) performance for a

CUDA block size of 12 × 12, which we choose for the Braess-Sarazin algorithm for which

these kernels dominate the cost. We confirmed that these are the best choices by timing a

full iteration of the algorithm for both problem sizes. Table 3.3 provides a concise overview

of the best parameters for both algorithms.

3.5.6 Vanka-Specific Kernels

For the Vanka-specific kernels, we perform a similar analysis as for the common kernels.

For all four kernels, we vary the thread block size from 4× 4 to 16× 16. Figure 3.10 shows

how the arithmetic intensity, performance, and runtime varies with this parameter, again

matching the color-coding used in fig. 3.7. Here, we notice that the measured arithmetic

intensity is higher than the theoretical analysis in table 3.2, in particular for the kernels

applying the patch inverses. This is expected, as we take advantage of fast shared memory

for storing the shared patch matrices, which is not accounted for in that analysis. We note,

however, that the arithmetic intensity does not vary much with block size, remaining largely

constant. The kernel updating the global solution has a comparatively low arithmetic inten-

sity, as it consists largely of memory movements and only very few floating-point operations.

35

A: Q2 matrix ∗ Q2 vector (n) F: Q2Q1 matrix ∗ Q1 vector (n) J: array minus array
B: Q2 matrix ∗ Q2 vector (x) G: Q2Q1 matrix ∗ Q1 vector (x) K: array plus array
C: Q2 matrix ∗ Q2 vector (y) H: Q2Q1 matrix ∗ Q1 vector (y) L: array plus array
D: Q2 matrix ∗ Q2 vector (c) I: Q2Q1 matrix ∗ Q1 vector (c) (in place)
E: Q2Q1 matrix ∗ Q2 vector M: array times scalar

0.0

0.1

0.2

A
I

(D
R

A
M

)

A B C D E F G H I J K L M

2562

4x4 tpb 8x8 tpb 12x12 tpb 16x16 tpb

0.0

0.1

0.2

A B C D E F G H I J K L M

10242

0

50

100

p
er

fo
rm

an
ce

[G
F

L
O

P
/
s]

A B C D E F G H I J K L M

2562

0

100

200

A B C D E F G H I J K L M

10242

kernels

0.00

0.02

0.04

0.06

ru
n
ti

m
e

[m
s]

A B C D E F G H I J K L M

2562

kernels

0.0

0.2

0.4

0.6

A B C D E F G H I J K L M

10242

Figure 3.9: Common kernels: CUDA block size vs. AI, performance, and runtime. 2562

elements in left column, 10242 elements in right column.

36

A: apply patch matrix (exterior) C: update global solution
B: apply patch matrix (interior) D: form patches

1
4

1
2

1

2

4

A
I

(D
R

A
M

)

A B C D

2562

4x4 tpb 8x8 tpb 12x12 tpb 16x16 tpb

1
4

1
2

1

2

4

A
I

(D
R

A
M

)
A B C D

10242

1

10

100

1000

p
er

fo
rm

an
ce

[G
F

L
O

P
/s

]

A B C D

2562

1

10

100

1000

p
er

fo
rm

an
ce

[G
F

L
O

P
/s

]

A B C D

10242

kernels

0.00

0.25

0.50

0.75

ru
n
ti

m
e

[m
s]

A B C D

2562

kernels

0

2

4

ru
n
ti

m
e

[m
s]

A B C D

10242

Figure 3.10: Vanka-specific kernels: thread-block size vs. AI, performance, and runtime.
2562 elements in left column, 10242 elements in right column.

37

Similarly, the kernel forming the various Vanka patches does not contain any floating-point

operations, resulting in zero arithmetic.

Analyzing the performance of the four kernels shows a rather similar picture, with the

thread block size causing only small variations in the performance. Even though the kernel

for the exterior patches and the kernel for the interior patches have a very similar arithmetic

intensity, they differ widely in terms of performance, by up to 2 orders of magnitude. This

is due to the comparatively high amount of work to be done for the interior patches. Once

again, the kernel for forming the Vanka patches has a performance of 0 GFLOP/s, as it does

not contain any floating point operations.

Both of these metrics, the arithmetic intensity and performance, are useful for evaluating

the different kernels, but the effective runtime is the defining criteria for which any set

of parameters is, ultimately, the best choice. Even though the kernels applying the patch

matrices to the exterior patches (A) has a much lower performance than the kernel applying

the patch matrices to the interior patches (B), the runtime of (A) for the smaller problem

size is only about a factor of 3 larger than that for (B). For the larger problem size, the

runtime of (A) is much lower than that for (B), by a factor of about 8. This is due to

the overall relatively small amount of computations required for (A), as the exterior regions

only grow linearly with the grid size in each dimension, whereas the interior region grows

quadratically with (one-dimensional) grid size. Here, we can also see that the proportional

runtime for the kernels (B), (C), and (D) is very much comparable, as already indicated in

the kernel runtime breakdown in fig. 3.7.

Next, we investigate the effect of “grouping” computational threads, by passing more

than one Vanka patch off to single CUDA thread within any one of the regions where the

Vanka patches share the same patch matrix. This reduces the number of overall threads

that need to be launched, while potentially further improving the memory accesses required.

Figure 3.11 shows the runtime of the two sets of kernels applying the patch matrices for the

four different thread block sizes, grouping patches together in groups of 1 to 64 patches per

thread. From fig. 3.11, we see that increasing the number of patches per thread typically

does not lead to a faster runtime; at best, the performance remains relatively constant.

Thus, we do not pursue this any further and remain using one thread per patch.

The four Vanka-specific kernels make up more than 75% of the overall runtime of a Vanka

iteration (see fig. 3.7), with each kernel taking up roughly the same proportion of overall

runtime. To avoid unnecessary complexity in the code, we choose a single CUDA block size

to use for the entire algorithm and all connected kernels. For the smaller problem size, a

CUDA block size of 8×8 is not the optimal choice for many of the individual kernels, but all

four kernels exhibit near-peak performance for this CUDA block size. For the larger problem

38

0 20 40 60

group size [patch]

1
10

1

10

ru
n
ti

m
e

[m
s]

2562

apply matrix (int) / 4 tpb
apply matrix (int) / 8 tpb
apply matrix (int) / 12 tpb
apply matrix (int) / 16 tpb

apply matrix (ext) / 4 tpb
apply matrix (ext) / 8 tpb
apply matrix (ext) / 12 tpb
apply matrix (ext) / 16 tpb

0 20 40 60

group size [patch]

10242

Figure 3.11: Vanka-specific kernels: Group size vs. runtime for 2562 elements (left) and
10242 elements (right).

size, the best choice of CUDA block size is 12× 12. We have also confirmed that these are

the best choices by timing a full iteration of the algorithm for both problem sizes. Table 3.3

provides a concise overview of the best parameters for both algorithms.

Algorithm # elements threads/block

Braess-Sarazin
2562 12× 12
10242 12× 12

Vanka
2562 8× 8
10242 12× 12

Table 3.3: Best parameter choices for both algorithms.

3.5.7 Roofline Model

Having analyzed the kernels above and selected the optimal thread block size, we now

consider a roofline model to measure for how efficient the kernels are on a given GPU.

Such models tell us whether an operation is memory or compute bound, and whether all

theoretically available computing power is used. Figure 3.12 shows two roofline models, one

for each of the two problem sizes, showing measured performance vs. arithmetic intensity

for each kernel in a Braess-Sarazin or Vanka relaxation sweep. Here, we very clearly see

that, for the larger problem size, most kernels lie right on or very close to the performance

39

10−2 10−1 100 101 102

arithmetic intensity [flop/byte]

101

102

103

104

p
er

fo
rm

an
ce

[G
F

L
O

P
/s

]

2562

Q2 matrix ∗ Q2 vector (n)

Q2 matrix ∗ Q2 vector (x)

Q2 matrix ∗ Q2 vector (c)

Q2 matrix ∗ Q2 vector (y)

Q2Q1 matrix ∗ Q2 vector
Q2Q1 matrix ∗ Q1 vector (n)

Q2Q1 matrix ∗ Q1 vector (x)

Q2Q1 matrix ∗ Q1 vector (y)

Q2Q1 matrix ∗ Q1 vector (c)

array minus array
array plus array
array plus array (in place)

array times scalar
Apply matrix (int)

Apply matrix (ext)

Update solution
Form patches
weighted Jacobi

10−2 10−1 100 101 102

arithmetic intensity [flop/byte]

10242

Figure 3.12: Roofline Model for all kernels

bound, meaning that they are running as fast as possible given their arithmetic intensity. In

order to improve their performance, we would need to find ways to increase their arithmetic

intensity. However, given the nature of these kernels and the underlying structured matrix

data structures, there is not an obvious avenue to do this.

Even though most of the kernels (all the matrix-vector and array operations) are clustered

together, there are four outliers in this data that we want to highlight:

1. The first outlier is the kernel corresponding to forming the Vanka patch submatrices,

which is not visible in the plot, as it consists entirely of memory movements and no

floating-point operations. Its arithmetic intensity and floating-point performance are,

thus, 0.

2. The second outlier is the kernel applying the patch matrix inverse to the exterior

patches of the domain. This has a low peak performance of only 6 GFLOP/s, as it

consists of mostly small operations (16 unique patch matrices, with 8 one-dimensional

regions sharing a patch matrix). It also acts on little enough data that, even for

the large problem size, we do not achieve the performance expected from the roofline

model.

3. The third outlier is a kernel that we mostly ignored in our analysis, the weighted

Jacobi kernel. This kernel achieves a higher performance than all but one other kernel,

with a peak performance of 753 GFLOP/s. However, it contributes less than 2% to

the overall runtime of Braess-Sarazin relaxation, with similar percentages of runtime

40

expected for the other algorithms that use it. Thus, even though its performance is

rather high, it has barely any measurable effect on the algorithm runtime.

4. The final outlier is the kernel applying the patch matrix inverse to the interior patches

of the domain. Its peak performance is roughly 2145 GFLOP/s, almost three times as

high as the next highest kernel. With this high performance, it still makes up about

20% of the overall runtime of Vanka. Thus, achieving this performance on this single

kernel results in the overall Vanka algorithm achieving much better performance.

Overall, we note that most of the kernels achieve their maximum possible performance,

as they lie right on the performance limit in the roofline model for the larger problem

size. Due to the nature of their operations, increasing their arithmetic intensity is not

possible and, thus, the performance of these algorithms cannot reasonably be expected to

be increased. One avenue to consider to improve the performance of the kernels that require

a disproportionately large volume of memory movement would be to try to “trade” some

memory movement for increasing numbers of floating-point operations; this will be a subject

for future research.

3.5.8 Overall Solver Performance

Finally, having analyzed and optimized the performance of the Vanka and Braess-Sarazin

relaxation schemes, we now look to see how they compare in practice, when used as relaxation

schemes inside of a multigrid V-cycle that is used as preconditioner for FGMRES applied

to the Stokes equations. We will also compare their performances to the performance of

FGMRES preconditioned with a multigrid V-cycle with Schur-Uzawa and preconditioned

with a Block-Triangular preconditioner with multigrid V-cycles used to approximate the

block inverses. The additional parameters needed for Schur-Uzawa and the Block-Triangular

preconditioner have been determined through further experiment. The optimal value of t

in the Schur-complement scheme is 1 with an optimal Jacobi weight of ω = 0.4. For the

Block-Triangular preconditioner, we determined that a total of 3 V-cycles are necessary for

both the pressure update solve and velocity update solve, and the two respective weights for

the weighted Jacobi relaxation are ω = 0.6 for the pressure update solve, and ω = 1.0 for

the velocity update solve.

The choice of outer Krylov method for a linear solve requires considering many factors.

Here, because the preconditioners are not guaranteed to be symmetric and positive definite,

we must use a general Krylov method instead of a specialized technique like CG or MINRES.

We choose to use FGMRES for two reasons. First, we find that right preconditioning is

41

a preferable framework to left preconditioning, since it does not change the norm of the

underlying minimization. Secondly, all of the chosen components lead to preconditioned

FGMRES algorithms that converge in tens of iterations, so the additional memory costs

for vector storage in FGMRES are feasible (even on the GPU) and preferable to the added

computational cost of an extra preconditioner application that is needed in classical GMRES.

We note, however, that none of the conclusions from this study would be substantially

changed by using classical right-preconditioned GMRES.

We use our own implementation of FGMRES, making use of our structured data struc-

tures, and use a multigrid V(1,1) cycle as preconditioner, and a V(3,3) cycle as part of the

Block-Triangular preconditioner. At each level of the multigrid algorithm, we use a sweep

of either Braess-Sarazin, Vanka, or Schur-Uzawa relaxation. With the Block-Triangular pre-

conditioner, we use three sweeps of weighted Jacobi. At the coarsest level, we use either an

exact solve on the CPU or three sweeps of the relaxation scheme on the GPU.

The first comparison we consider is a comparison of Braess-Sarazin to both our tuned

Vanka implementation described in this chapter and a simple Vanka implementation, shown

in fig. 3.13. All of the results are for problems of size 10242, with the exception of the

0 10 20 30

runtime [s]

10−5

10−3

10−1

re
la

ti
ve

re
si

d
u

al

CPU

Vanka, tuned

Vanka, simple

Braess-Sarazin

0.0 0.5 1.0 1.5

runtime [s]

GPU

Figure 3.13: Comparing Vanka to Braess-Sarazin for a problem of size 10242 elements (7682

elements for simple Vanka)

simple Vanka runs. Due to its higher memory requirements, the largest problem size that

successfully ran was a problem of size 7682 elements. However, even though simple Vanka

has just over half as many elements as the other approaches, it is still not able match their

performance. On the CPU, we see that multigrid with Braess-Sarazin relaxation strongly

outperforms the use of Vanka relaxation. Even though multigrid with Vanka relaxation

42

typically requires one fewer iteration to reach convergence, the work required per iteration is

significantly larger than for Braess-Sarazin, resulting in multigrid with Vanka taking about

twice as long. On the GPU, however, we are able to take advantage of the throughput of

Vanka, resulting in a runtime that is more than 23 times smaller than on the CPU, whereas

the runtime for Braess-Sarazin is only reduced by a factor of about 11. Overall, on the GPU,

tuned Vanka outperforms Braess-Sarazin by about 10%.

Next, we compare Braess-Sarazin and tuned Vanka to the other two preconditioning strate-

gies, monolithic multigrid with Schur-Uzawa and the Block-Triangular preconditioner, shown

in fig. 3.14. We can see that both the multigrid preconditioner with Schur-Uzawa relax-

0 20 40

runtime [s]

10−5

10−3

10−1

re
la

ti
ve

re
si

d
u

al

CPU

Vanka (tuned)

Braess-Sarazin

Schur-Uzawa

Block-Triangular

0 2 4

runtime [s]

GPU

Figure 3.14: Comparing all four preconditioning strategies for a problem of size 10242 ele-
ments

ation and the Block-Triangular preconditioner are not able to match the performance of

both Braess-Sarazin and Vanka. Initially they perform very well, in particular the Block-

Triangular preconditioner, but they soon slow down requiring up to more than 3 times as

long as Braess-Sarazin and Vanka (on the GPU).

The third metric to consider is the performance of our tuned Vanka implementation for two

problem sizes when normalized per element on the CPU and per row of elements on the GPU;

this is shown in fig. 3.15. We observe that the time for the tuned Vanka implementation

(per element) remains the same no matter the problem size on the CPU, requiring about

0.03ms per element. Thus, there is no additional overhead introduced by the size of the

problem. On the GPU, we are able expose the fine-grained parallelism in the tuned Vanka

implementation, resulting in a constant work per row of elements at just over 1 ms. In fact,

we are able to perform about 10% faster per row of elements for the larger problem size.

43

0.00 0.01 0.02 0.03
runtime per element

10−5

10−3

10−1

re
la

ti
ve

re
si

d
u

al

CPU

Vanka, 256 Vanka, 1024

0.0 0.5 1.0
runtime per n elements

GPU

Figure 3.15: Showing the work per element (in ms) of tuned Vanka for 2562 and 10242

elements.

These results show that a careful implementation of Vanka on the GPU not only results in

the fastest time to convergence, but it also does so without requiring additional parameters

to be set. In addition, the parallelism of Vanka makes it a clear favorite in distributed

memory settings.

3.6 CONCLUSION

Several preconditioners for FGMRES are well-known to yield scalable solution algorithms

for saddle-point problems, such as the Stokes equations, including both monolithic multigrid

and multigrid-based block-factorization preconditioners. Here, we consider their implemen-

tation, performance, and optimization, on modern CPU and GPU architectures. Different

metrics were presented and analyzed, including arithmetic intensity, performance, and run-

time, for the various kernels making up these algorithms. Given a highly structured setup,

we show that multigrid with Vanka relaxation can be very performant on the GPU, leading

to faster convergence than when using Braess-Sarazin, both in terms of iterations (saving

just 1 iteration) and runtime (up to 10% faster). This shows that using Vanka relaxation is

both mathematically and computationally competitive, although a careful design of the al-

gorithm is warranted. This also highlights the benefit of using GPUs for such algorithms, as

multigrid with Vanka on the GPU is up to 23 times faster than on the CPU, while multigrid

with Braess-Sarazin is up to 11 times faster.

We also presented two other preconditioning strategies, multigrid preconditioner with

44

Schur-Uzawa relaxation, and Block-Triangular preconditioner with multigrid and weighted

Jacobi within. Both of these have been shown to not be able to compete with multigrid with

Braess-Sarazin or Vanka, in particular on the GPU. In addition, they introduce additional

parameters that need to be carefully chosen.

Future work includes extending this work to cases where the tuned Vanka approach is not

applicable, such as for linearizations of the Navier-Stokes equations. It is also not clear how

well these results generalize to other discretizations of saddle-point systems (including both

higher-order discretizations using generalized Taylor-Hood elements and other discretiza-

tions, such as using discontinuous Galerkin methods). Extensions to three-dimensional in-

compressible flow problems and other saddle-point systems are also important future work.

One such system of interest, for example, that combines some of these difficulties is the

Reynolds-Averaged Navier-Stokes (RANS) equations, in the context of wind-turbine simu-

lations.

45

CHAPTER 4: RAS+ILU FOR THE REYNOLDS-AVERAGED
NAVIER-STOKES EQUATIONS

In this chapter model turbulence around a wind turbine. The turbulence flow can be

described using the Reynolds-averaged Navier-Stokes (RANS) equations. We re-derive these

equations and explore different ways the Reynolds-stress tensor can be handled. Even so,

for the rest of the chapter we set the Reynolds-stress tensor to zero and work with a direct

numerical simulation (DNS).

The focus of this work is on the use of restrictive additive Schwarz (RAS) paired with

incomplete LU (ILU) as part of a new solver for the Navier-Stokes equations. We explore

various existing approaches and see how convergence is limited for our model problem.

We introduce a new solver that is capable of solving our model problem for moderate to

large Reynolds numbers. After analyzing its performance we further explore homotopy (or

continuation methods) and how faster convergence can be achieved. They also allow the

solving of even more difficult problems. Lastly, we develop a dynamic version of our solver

that is capable of self-tuning the continuation steps.

4.1 REYNOLDS-AVERAGED NAVIER-STOKES (RANS) EQUATIONS

The Reynolds-averaged Navier-Stokes (RANS) equations [59] are time-averaged equations

that model fluid flow and are used to describe turbulent flows. To derive these equations,

we start with the Navier-Stokes equations as described by

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ f (4.1)

∇ · u = 0 (4.2)

where u is the fluid velocity, p is the pressure divided by the density, and ν is the velocity.

In order to derive the RANS equations from these two equations, we start by using a

Reynolds decomposition such that the equations eq. (4.1) and eq. (4.2) are decomposed into

a time-averaged (mean) and a fluctuating quantity, u = ū+ u′ and p = p̄+ p′. From there,

the system of PDEs describing turbulent flows is given as

∂u

∂t
+ u · ∇u = −∇p̄+ ν∇2ū+ f (4.3)

∇ · ū = 0 (4.4)

46

where the mean is computed as an ensemble average,

ϕ̄E(x, t) = lim
N→∞

1

N

N∑
k=1

ϕk(x, t) (4.5)

where ϕ is a generic flow variable, and N is the number of repeated experiments. For a

turbulent spatially homogeneous flow and turbulent statistically steady state, it is assumed

that the time average, ϕ̄T , and the volume average, ϕ̄V , is equal to the ensemble average ϕ̄E.

In eq. (4.3) we make use of the property

uu = (ū+ u′)(ū+ u′)

= ūū+ ūu′ + u′ū+ u′u′ (4.6)

= ūū+ u′u′

noting that ūu′ = u′ū [60], to obtain the equation

∂u

∂t
+ ū · ∇ū = −∇p̄+ ν∇2ū−∇τ + f (4.7)

where τ = u′u′ is the Reynolds-stress term. This is equivalent to the Reynolds-stress tensor

divided by the density. Its diagonal entries correspond to the normal stresses, and its off-

diagonal components correspond to the shear stresses. Integration in time removes the time

dependence, resulting in the steady-state RANS equations

ū · ∇ū = −∇p̄+ ν∇2ū−∇τ + f (4.8)

∇ · ū = 0 (4.9)

The difficulty in solving the RANS equations as described in eq. (4.8) and eq. (4.9) is that the

Reynolds-stress tensor introduces six additional unknowns, resulting in an unclosed system

of equations.

4.1.1 Weak Form and Stabilization

We study the RANS equations discretized by a finite element method. Let H1
0(Ω) be the

Hilbert space defined as

H1
0(Ω) = {v ∈ H1(Ω) : v · n = 0 on δΩ} (4.10)

47

and define the finite-dimensional subspaces Xh
0 ⊂ H1

0 and Mh ⊂ L2(Ω). The weak formula-

tion of the Reynolds-averaged Navier-Stokes equations given in eqs. (4.8) and (4.9) is then

given by: Find u ∈ Xh
0 and p ∈Mh such that

ν (∇ · u,∇ · v) + (∇u,v) + (∇ · v, p) + (τ,∇v) = (f ,v) ∀v ∈ Xh
0 (4.11)

(∇u, q) = 0 ∀q ∈ L2(Ω). (4.12)

The weak form as described in eq. (4.11) and eq. (4.12) is very similar to the weak form of

the standard Navier-Stokes equations. However, the addition of the Reynolds-stress tensor

requires additional steps to be taken in order to model that quantity.

4.2 MODELING THE REYNOLDS-STRESS TENSOR

An important task when working with the RANS equation is being able to model the

Reynolds-stress tensor in eq. (4.7). This is done either directly as with the eddy-viscosity

models, or indirectly by solving additional PDEs in closure models. There are a few main

classes of models that are commonly used for this purpose [59]:

1. Zero-equation models: In zero equation models only the mean-velocity field is solved

using a system of PDEs,

∂ūi

∂t
+ ūj

∂ūi

∂xj

= − ∂p̄

∂xi

+ ν
∂2ūi

∂xj∂xj

− ∂τij
∂xj

, (4.13)

∂ūi

∂xi

= 0, (4.14)

τij =
2

3
Kδij − νT

(
∂ūi

∂xj

+
∂ūj

∂xi

)
, (4.15)

where K is the average kinetic energy of the velocity fluctuations, K = 1
2
u′
iu

′
i, and νT

is the eddy viscosity, νT ∝ l20
t0
, where l0 and t0 the turbulence length and time scales,

both obtained empirically and provided algebraically. In incompressible flows, τ ′ij can

be incorporated into the mean-pressure flow in eq. (4.13) and thus the term involving

K disappears alleviating the need to compute K.

2. One-equation models: One-equation models extend the zero-equation models by

adding an additional transport equation to calculate the turbulence kinetic energy.

They are also able to account for some non-local and history effects in the definition

48

of the eddy viscosity. The system of equations is described as

∂ūi

∂t
+ ūj

∂ūi

∂xj

= − ∂p̄

∂xi

+ ν
∂2ūi

∂xj∂xj

− ∂τij
∂xj

, (4.16)

∂ūi

∂xi

= 0, (4.17)

∂K

∂t
+ ūi

∂K

∂xi

= −τij
∂ūi

∂xj

− C∗K
3/2

l0
+

∂

∂xi

(
νT
σK

∂K

∂xi

)
+ ν

∂2K

∂xi∂xi

, (4.18)

τij =
2

3
Kδij − νT

(
∂ūi

∂xj

+
∂ūj

∂xi

)
, (4.19)

νT = K1/2l0 (4.20)

where K is the average kinetic energy of the velocity fluctuations, K = 1
2
u′
iu

′
i, νT is

the eddy viscosity, l0 is the turbulence length, and σK ≈ 1.0 and C∗ = 0.166 are two

nondimensional constants.

3. Two-equation models: Two-equation models further extend the one-equation model

by an additional transport equation. These two additional equations are solved for two

independent quantities associated with turbulence, directly related to the turbulence

length and time scales.

• K-ϵ models: One such two-equation model is the so-called (K-ϵ) model where the

turbulence length and time scales are constructed from K, the turbulent kinetic

energy, and ϵ, the turbulent dissipation rate,

l0 ∝
K3/2

ϵ
, τ0 ∝

K

ϵ
. (4.21)

49

This leads to the system of PDEs,

∂ūi

∂t
+ ūj

∂ūi

∂xj

= − ∂p̄

∂xi

+ ν
∂2ūi

∂xj∂xj

− ∂τij
∂xj

, (4.22)

∂ūi

∂xi

= 0, (4.23)

∂K

∂t
+ ūi

∂K

∂xi

= −τij
∂ūi

∂xj

− ϵ+
∂

∂xi

(
νT
σK

∂K

∂xi

)
+ ν

∂2K

∂xi∂xi

(4.24)

∂ϵ

∂t
+ ūi

∂ϵ

∂xi

= −Cϵ1

ϵ

K
τij

∂ūi

∂xj

+
∂

∂xi

(
νT
σϵ

∂ϵ

∂xi

)
− Cϵ2

ϵ2

K
+ ν

∂2ϵ

∂xi∂xi

(4.25)

τij =
2

3
Kδij − νT

(
∂ūi

∂xj

+
∂ūj

∂xi

)
(4.26)

νT = Cµ
K2

ϵ
(4.27)

with the constants Cϵ1 = 1.44, Cϵ2 = 1.92, Cµ = 0.09, σK = 1.0, and σϵ = 1.3.

• K-l models: The K-l models are very similar to the K-ϵ models. They are based

on the solution of the transport equation for the turbulent kinetic energy K (see

eq. (4.18)) and the solution of the transport equation for the integral length scale

l,

∂(Kl)

∂t
+ūi

∂(Kl)

∂xi

=
∂

∂xi

[
(ν + β1K

1/2l)
∂

∂xi

(Kl) + β2K
3/2l

∂l

∂xi

]
−β3lτij

∂ūi

∂xi

−β4K
3/2,

(4.28)

where β1, β2, β3, and β4 are empirical constants. In particular for the case of

homogeneous flows, the K-l model can be shown to be equivalent to the K-ϵ

model with different values for the constants Cµ, Cϵ1, and Cϵ2.

• K-ω models: Another variation of the two-equation models are the K-ω models

which as the K-l model are also based on the solution of the transport equation

for the turbulent kinetic energy K (see eq. (4.18)), but also on the solution of the

equation for the reciprocal turbulent time scale (ω = ϵ
K
),

∂ω

∂t
+ ūi

∂ω

∂xi

= −γ1
ω

K
τij

∂ūi

∂xj

+
∂

∂xi

(
νT
σω

∂ω

∂xi

)
− γ2ω

2 + ν
∂2ω

∂xi

∂xi (4.29)

where νT = γ∗K
ω

, γ1, γ2, γ
∗, and σω are constants.

• Nonlinear eddy-viscosity models: The nonlinear eddy-viscosity models create clo-

50

sures for the Reynolds-stress tensor that are nonlinear in the mean strains,

τij =
2

3
Kδij − 2

l20
τ0
S̄ij + α1l

2
0

(
S̄ikS̄kj −

1

3
S̄mnS̄mnδij

)
(4.30)

+ α2l
2
0

(
S̄ikW̄jk + S̄jkW̄ik

)
+ α3l

2
0

(
W̄ikW̄kj −

1

3
W̄mnW̄mnδij

)
+ α4l

2
0

(
∂S̄ij

∂t
+ ū · ∇S̄ij

)
,

where S̄ij is the mean strain-rate tensor, W̄ij is the mean-vorticity tensor, and α1,

α2, α3, and α4 are dimensionless constants.

4. Stress-equation models: Stress-equation models, also called τij-ϵ or second-order

models, involve the solution of modeled equations for the Reynolds-stress and dissipation-

rate transport equations. They do not require approximations to the Reynolds-stress

term on the right-hand side of eq. (4.8). The typical form of the PDEs to be solved in

this class of models can be described as,

∂ūi

∂t
+ ūj

∂ūi

∂xj

= − ∂p̄

∂xi

+ ν
∂2ūi

∂xj∂xj

− ∂τij
∂xj

, (4.31)

∂ūi

∂xi

= 0, (4.32)

∂τij
∂t

+ ūk
∂τij
∂xk

= −τij
∂ūj

∂xk

− τjk
∂ūi

∂xk

+ ϵAij +KMijkl
∂ūk

∂xl

− 2

3
ϵδij (4.33)

+ Cs
K

ϵ

∂

∂xk

(
τim

∂τjk
∂xm

+ τjm
∂τik
∂xm

+ τkm
∂τij
∂xm

)
+ ν

∂2τij
∂xk∂xk

∂ϵ

∂t
+ ūi

∂ϵ

∂xi

= −Cϵ1
ϵ

K
τij

∂ūi

∂xj

+ Cϵ
∂

∂xi

(
K

ϵ
τij

∂ϵ

∂xj

)
− Cϵ2

ϵ2

K
+ ν

∂2ϵ

∂xi∂xi

(4.34)

where Aij and Mijkl are functions of the energy-spectrum sensor in time and wave-

number space, Cs ≈ 0.11, Cϵ1 = 1.44, and Cϵ2 = 1.92

5. Algebraic-stress turbulence models: Based on the fact that nonlinear anisotropic

models for the Reynolds-stress tensor can be derived algebraically from an analysis of

the Reynolds-stress equation, additional two-equation models of the K-ϵ type can be

constructed. It comes with the additional assumption that the turbulence is locally

51

homogeneous and in equilibrium. The resulting system of PDEs then takes the form,

∂ūi

∂t
+ ūj

∂ūi

∂xj

= − ∂p̄

∂xi

+ ν
∂2ūi

∂xj∂xj

− ∂τij
∂xj

, (4.35)

∂ūi

∂xi

= 0, (4.36)

∂K

∂t
= −τij

∂ūi

∂xj

− ϵ (4.37)

∂ϵ

∂t
= −C∗

ϵ1

ϵ

K
τij

∂ūi

∂xj

− Cϵ2
ϵ2

K
(4.38)

τij =
2

3
Kδij −

3

3− 2η2 + 6ξ2

[
α1

K2

ϵ
S̄ij (4.39)

+ α2
K3

ϵ2
(S̄ikW̄kj + S̄jkW̄ki)

−α3
K3

ϵ2

(
S̄ikS̄kj −

1

3
S̄klS̄klδij

)]

A common choice [61] for modeling the Reynolds-stress tensor are the zero-equation mod-

els. They can be used rather easily as they only calculate the mean-velocity and pressure

quantities. That ease of use comes at the cost of accuracy, though, as they do not take

history effects into account and require a turbulent length scale specific to each problem.

Increasing the complexity with the one- and two-equation models allows for a more accurate

modeling at the expense of computational cost, although they are also not able to take all

physical properties of the underlying problem into account. Stress-equation models solve

many of the shortcomings of the other models, but are not applicable to all turbulent flows.

The right model to choose for modeling the Reynolds-stress tensor is depending entirely

on the problem one needs to solve and the dominating physical properties.

4.3 SIMPLIFICATIONS

The goal of this chapter is to develop a scalable iterative solver for the RANS equa-

tions, with a particular focus on Restricted additive Schwarz (RAS) combined with ILU(0).

Recently, additive Schwarz methods have received renewed interest (see section 4.8 for an

overview and more details), with RAS/ILU showing a lot of promise for solving equations

such as these [62, 63]. For our initial investigation we consider a simplified setup by employ-

ing a direct numerical simulation (DNS). This means that we are solving the Navier-Stokes

equations without the use of any turbulence model, thus we effectively set the Reynolds-

stress tensor to zero. This simplification allows us to work on our solver and preconditioner

52

without the added difficulty introduced by using a turbulence model.

4.4 MOTIVATING APPLICATION

The model problem for this chapter consists of wind blowing across a field hitting a wind

turbine located in the middle of that domain. The wind turbine exerts an opposing force

causing turbulence and near-singularities in the underlying equations to arise. Figure 4.1

presents a schematic of this setup. A cross-section of a sample solution to this model problem
x
=

in
fl
ow

p
ro
fi
le

y
=

z
=

0

wind turbine

n
o
b
ou

n
d
ar
y
co
n
d
it
io
n
s

im
p
os
ed

no-stress boundary, z=0

no-slip boundary

Figure 4.1: Schematic of motivating application

for a Reynolds number of R = 500 is shown in fig. 4.2.

4.4.1 Turbine Force

The turbine force is composed of a few different parts: the location of the turbine (in the

x/y/z planes), the diameter of the rotator, and the yaw of the turbines [64]. These are then

composed in order to obtain the different required quantities, starting with the thickness of

the turbine,

T = exp

(
−
(xrot

W

)6)
(4.40)

where xrot is the rotated x location of the turbine (based on the yaw of the turbines) and W

is the thickness of the rotator plane. Next, the quantity representing the disk of the turbine

is defined as

D = exp

(
−
(r

R

)6)
(4.41)

53

(a) (b)

Figure 4.2: (a) Cross-section of velocity component of sample solution, (b) cross-section of
pressure component

where r =
√

y2rot + z2rot, with yrot and zrot denoting the rotated y and z location, and R is

the rotor radius. The force F is defined by

F = −0.5πR2

(
4ma

1−ma

)
r sin(πr) + 0.5

Snorm

(4.42)

with ma = 0.3 being the modified thrust coefficient, and Snorm = 2+π
2π

. Then we compute

the disk averaged velocity in the yawed case by

da = FTD
yvec

volnorm
(4.43)

where yvec =

cos(θ)sin(θ)

0

 with θ being the yaw of the turbines, and volnorm = (2Γ(7
6
))(πΓ(7

6
))WR2

with Γ(z) =
∫∞
0

tz−1e−tdt. We now expand the dot product

tf1 = da cos(θ)
2 (4.44)

tf2 = da sin(θ)
2 (4.45)

tf3 = 2da cos(θ) sin(θ) (4.46)

54

and compose the full turbine force tf by combining them with the two components of the ve-

locity function u0 and u1 (i.e., along the horizontal plane parallel to the plane corresponding

to the ground),

tf = tf1u
2
0 + tf2u

2
1 + tf3u0u1 (4.47)

In order to include this term in the final expression of the RANS equation it is subtracted

from eq. (4.8).

The resulting turbine force is localized in a relatively small area in the middle of the

domain. Figure 4.3 shows a visualization of the resulting force.

Figure 4.3: Visualization of turbine force.

4.5 DISCRETIZATION AND LINEARIZATION

The finite elements must satisfy the inf-sup condition (also known as Ladyženskaja-

Babuška-Brezzi (LBB) condition) in order to guarantee stability, due to the absence of

pressure in the continuity equation. We choose the Q2-Q1 Taylor-Hood elements that sat-

isfy this condition. We express the system of linear equations in matrix-vector form byLu+N(u) +BTp = f

Bu = g
(4.48)

where Lu is the discretization of the viscous term, N(u) is the discretization of the nonlinear

convective term, Bu is the discretization of the negative divergence of u, and BTp is the

discretization of the gradient of p. All contributions to the source term, the boundary integral

55

and contributions by the boundary conditions are contained in the right-hand side vectors

f and g.

In order to apply a solver to this system, we need to linearize its nonlinearity. Two common

choices to do so are Picard and Newton linearization. With Picard linearization ui at the

current iteration k is approximated by taking it from the previous iteration, uk−1
i . This

simple step turns the nonlinear PDE into a linear PDE. Picard linearization works well for

nonlinear differential equations where the nonlinearity is due to convection-type terms. For

more general nonlinearities, Newton linearization might be required. Newton linearization

starts out in a similar way as Picard linearization by replacing uk
i with the approximation

uk−1
i +δuk

i . This leads to a more complicated expression that is typically simplified, with the

assumption that δuk
i is small and thus any power of δuk

i greater than 1 is discarded. This

results in a linearized system of equations. If the assumption of δuk
i being small does not

hold, then Newton linearization may diverge.

Once linearization has been done, the system of equations described in eq. (4.48) is de-

scribed as in eq. (4.49),

A =

[
F BT

B 0

][
u

p

]
=

[
f

g

]
, (4.49)

where F contains the action of L combined with the linearization of N(u). The system

of equations in eq. (4.49) is a linear saddle point problem with a zero block on the main

diagonal (corresponding to the continuity equation).

4.6 EXISTING SOLVERS AND PRECONDITIONERS

Over the last few decades several different solvers and particularly preconditioners for the

Navier-Stokes and, by extension, RANS equations have been developed.

Wasserman et al. [65] propose an extension to the multigrid method using the uncondi-

tionally positive-convergent (UPC) implicit time integration scheme. They successfully use

this method to solve the RANS equations for two-equation turbulence models. They show its

robustness and convergence improvements, in particular relative to an equivalent single-grid

method based on the UPC scheme.

Another recent paper involving multigrid schemes was published by Baars et al. [66] They

proposed a novel multigrid preconditioning method designed in particular for the 3D Navier-

Stokes equations by using a skew partitioning scheme with rotated parallelepiped shaped

overlapping subdomains that do not have any faces aligned with the actual grid. They show

good scaling behavior of their new preconditioner and successfully used it to precondition

56

GMRES for solving the lid-driven cavity problem at high Reynolds numbers.

Farrell et al. [67] propose an augmented Lagrangian preconditioner for the 3D stationary

Navier-Stokes equations that is particularly suited for high Reynolds numbers. They suc-

cessfully solved the Navier-Stokes equations with Reynolds numbers up to 5000, however,

their approach has some limitations. In particular, the discretization used does not exactly

represent the divergence-free constraint and the multigrid algorithm used is tightly coupled

to the use of piecewise constant elements for the pressure.

Discretizations other than standard finite elements have been proposed for solving the

(RA)NS equations. In their recent book chapter on numerical methods in turbulence sim-

ulation, Fischer and Tomboulides [68] present the spectral element methods for turbulence.

The spectral element method is a natural extension of spectral methods that retains the

rapid convergence of spectral methods while accommodating more complex domains. They

show the successful use of this discretization with the SEMFEM preconditioner (a hybrid

preconditioner based on both spectral and finite elements) and various multigrid-based pre-

conditioners.

Another possible discretization is a finite volume discretization. Klaij and Vuik [69] com-

pared different SIMPLE and SIMPLE-type preconditioners (see section 4.6.1) using the finite

volume discretization for cell-centered, collocated variables on unstructured grids. They find

that in a real-world application, some variants of SIMPLE do not work as well (particularly,

MSIMPLER) but others hold up quite well and appeared rather robust regarding the choice

of parameters.

Most methods can be categorized in one of two categories: Methods that rely on a careful

reordering of the degrees of freedom paired with some classical iterative method [70–72], and

methods that are based on segregation. For the latter category, the system is split into its

velocity and pressure component and then factorized into blocks to allow the use of iterative

schemes [73–77].

Block preconditioners have two clear advantages over other approaches [78]:

1. Since the velocity and pressure components are split allows an easier application of

existing preconditioning strategies to these individual blocks.

2. Any coupling between the physics is located in the Schur complement operator. This

reduces the challenge in block preconditioning to finding an effective and appropriate

approximation of the action of the inverse Schur complement.

In the following we give an overview of existing preconditioning schemes, both block precon-

ditioners and some based on reordering of the degrees of freedom. Following this overview

57

we will focus specifically on block-preconditioning strategies for designing our new precon-

ditioner.

4.6.1 LDU Decomposition and Error Analysis

The block preconditioners for Krylov solvers are based on the LDU decomposition of the

discretized system matrix,

A =

[
F BT

B 0

]
= LbDbUb =

[
I 0

BF−1 I

][
F 0

0 S

][
I F−1BT

0 I

]
(4.50)

with the Schur complement S = −BF−1BT . If we denote F−1 in the lower triangular block

by the G1, F
−1 in the upper triangular block by G2, and Ŝ as an approximation to S, we

obtain the following decomposition,

Â =

[
I 0

BG1 I

][
F 0

0 Ŝ

][
I G2B

T

0 I

]
=

[
F FG2B

T

BG1F BG1FG2B
T + Ŝ

]
(4.51)

Thus, we can denote the error matrix E = A− Â as

E =

[
0 BT − FG2B

T

B −BG1F −BG1FG2B
T − Ŝ

]
(4.52)

From the error matrix we are able to see how approximations to G1, G2, and Ŝ affect the

momentum and/or continuity part of the original problem. For instance if G2 = F−1 then

the resulting scheme is momentum preserving as the upper right block of the error matrix

is the zero matrix. At the same time he quality of approximation for Ŝ only affects the

continuity equation.

Most preconditioners based on this factorization either group the L and D or the D and

U factors together, resulting in eq. (4.53) and eq. (4.54).

ÂLD =

[
F 0

BG1F Ŝ

][
I G2B

T

0 I

]
(4.53)

ÂDU =

[
I 0

BG1 I

][
F FG2B

T

0 Ŝ

]
(4.54)

A common practice of preconditioners is to drop the ungrouped part of the LDU factoriza-

tion and use only one of the resulting block-triangular factors. The resulting error matrices

58

for these two cases are given in eq. (4.55) and eq. (4.56).

ELD =

[
0 BT

B(I −G1F) −Ŝ

]
(4.55)

EDU =

[
0 BT (I − FG2)

B −Ŝ

]
(4.56)

Depending on which grouping is used, the resulting scheme incurs a fixed (though potentially

very small) error either in the momentum or continuity equation. The rest of the error

depends entirely either on the quality of the approximation of G1 or G2 respectively (but

not both) and the quality of the approximation of Ŝ. This approach is a careful balancing act

between reducing the complexity (and potential sources of errors) in the scheme itself and

the error incurred by being based on an approximate system to begin with. There are also

some mathematical reasons why such an approach might be favorable as they still produce

a correct solution. For instance, for SIMPLE, the resulting pressure field obtained is such

that the velocity field still satisfies the continuity equation. For more details on this see [79,

chapters 6.5 to 6.7].

4.6.2 Pressure-Convection-Diffusion (PCD)

The PCD preconditioner [73] is based on the DbUb factors and approximated the Schur

complement S by S ≈ Ŝ = −ApF
−1
p Qp, with the full algorithm described in algorithm 4.1.

Solving our mode problem as described in fig. 4.1 using the PCD preconditioner in Firedrake

Algorithm 4.1: PCD preconditioner

1 Compute [ru; rp] = Pt[u; p]
2 Solve Sp = rp
3 Update ru = ru −BTp
4 Solve Fu = ru

for varying numbers of Reynolds numbers results in a breakdown of the solver for very small

Reynolds number, as shown in fig. 4.4. For the results in fig. 4.4 we use LU as exact solver for

the various solves necessary. The PCD preconditioner is known to exhibit good convergence

behavior for enclosed flows [27]. However, it requires the assembly of a new matrix and thus

is both inefficient and implementationally inconvenient. Applying the PCD preconditioner

to our model problem shows that it is rather sensitive to the Reynolds number and fails to

converge for rather small Reynolds numbers.

59

1.0 1.5 2.0 2.5 3.0
Reynolds number

10

20

30

40

n
on

li
n

ea
r

it
er

at
io

n
s

PCD

point of breakdown of solver

Figure 4.4: GMRES with PCD in 3D, implemented in Firedrake.

4.6.3 Least-Squares Commutator

The least squares commutator (LSC) preconditioner [27, 74] is based in the same principle

as the PCD preconditioner. It approximates the discrete convection-diffusion operator, Fp,

such that the commutator of the convection-diffusion operator,

ϵ = L∇−∇Lp (4.57)

where Lp is the convection-diffusion operator in the pressure space, becomes small by solving

the least-squares problem

min ||
[
Q−1

v FQ−1
v BT

]
j
−Q−1

v BTQ−1
p [Fp]j ||Qv (4.58)

for column j of matrix Fp with ||x||Qv =
√

xTQvx. This allows the approximation of the

Schur complement as

BF−1BT ≈ (BQ−1
v BT)(BQ−1

v FQ−1
v BT)−1(BQ−1

v BT). (4.59)

The dense inverse Q−1
v is approximated by its diagonal, Dv = diag(Qv). The full algorithm

is described in algorithm 4.2. The LSC preconditioner was proposed in response to the

drawbacks of PCD, in particular the need of PCD to construct a new matrix, by only using

the existing blocks of the system matrix. Elman et al. [27] find that the convergence behavior

of LSC is not dependent on the grid resolution but does depend on the Reynolds number.

They show that for solving a two-dimensional flow over a step increasing the Reynolds

60

Algorithm 4.2: LSC preconditioner

1 Solve Sfz2 = r2, where Sf = BD−1
v BT

2 Update r2 = BD−1
v FD−1

v BT z2
3 Solve Sfz2 = −r2
4 Update r1 = r1 −BT z2
5 Solve Fz1 = r1

number from 10 to 200 increases the number of nonlinear Newton iteration by a factor of

about 2 and the number of linear iterations by a factor of about 3. For the lid-driven cavity

in two dimensions they observed a much more dramatic increase in the number of iterations,

about 4× for the number of nonlinear iterations and about 20× for the number of linear

iterations.

4.6.4 Augmented Lagrangian (AL)

The idea of the Augmented Lagrangian preconditioner [75] is to introduce an additional

term in the equations that modifies the Schur complement but does not change the contin-

uous solution. This approach is also referred to as grad-div stabilization, and leads to the

following variation of eq. (4.49) ,[
F + γBTM−1

p B BT

B 0

](
δu

δp

)
=

(
b+ γBTM−1

p c

c

)
(4.60)

with Mp being the pressure mass matrix. For γ not too small, the Schur complement inverse

is approximated by

S−1 ≈ −(ν + γ)M−1
p . (4.61)

This approach requires specialized multigrid algorithm, and are described as difficult to

implement [80]. Practical approaches apply certain simplifications that allow for algebraic

multigrid techniques to be applied, however, the convergence of the resulting scheme dete-

riorates as the Reynolds number increases [81]. Recently He et al. [82] propose a variation

of the AL preconditioner that uses the Schur complement approximation from the SIMPLE

preconditioner as part of the approximation of the inverse of the Schur complement matrix

for the AL preconditioner. They were able to solve the RANS equations with large Reynolds

number much more efficiently than the basic SIMPLE algorithm described below.

61

4.6.5 SIMPLE and Its Variations

The original SIMPLE preconditioner [76, 77] is based on the LbDb factors with the Schur

complement S approximated by S ≈ Ŝ = −BD−1BT where D = diag(F), with the full

algorithm shown in algorithm 4.3. with p∗ estimated from the prior iteration. There have

Algorithm 4.3: SIMPLE preconditioner

1 Solve Fu∗ = ru −BTp∗

2 Solve Sδp = rp −Bu∗

3 Update u = u∗ −D−1BT δp
4 Update p = p∗ + δp

been many variations of SIMPLE developed over the years. SIMPLEC replaced the diagonal

approximation of F with a diagonal matrix where each entry is the absolute row sum of the

corresponding row in F , leading to a better approximation to the matrix F . SIMPLER is

a variation that adds an additional step to the algorithm to provide a better value for p∗ at

the start of each iteration by solving the equation

Sp∗ = rp −BD−1((D − F)uk + ru) (4.62)

with uk obtained from the prior iteration. These variations themselves have different sub-

variations themselves, all aiming to make the error in the algorithm smaller or to reduce the

dependence on parameters like the Reynolds number.

4.6.6 Reordering of Degrees of Freedom

Applying standard finite element code to block preconditioners as the ones presented in

section 4.6.1 has one major disadvantage: it requires an adaptation of the setup in order

to split velocity and pressure degrees of freedom. An alternative approach that does not

require such a splitting is the application of ILU with a specific reordering of the degrees of

freedom.

A direct application of LU or ILU is not possible, as the continuity equations contain a

zero pressure block resulting in a zero pivot. Applying a pivoting strategy, however, increases

the memory requirements significantly [83]. There has been work done by Wille et al. [84–86]

that shows that certain specific orderings of the degrees of freedom result in pivoting to not

be necessary. In particular, a typical sorting of the unknowns so that the velocity degrees

of freedom come first and the pressure degrees of freedom come second results in a so-called

62

p-last ordering. The resulting system matrix not only has the troublesome zero block but

also has a large profile.

A different approach is to combine a node renumbering scheme with a specific reordering of

the degrees of freedom [70], in particular, the Cuthill-McKee (and related Reverse Cuthill-

McKee (RCM)) or Sloan [87] ordering (for meshes with only nodes). Instead of a p-last

ordering as proposed by Wille, these reorderings are based on the concept of levels.

For the Cuthill-McKee ordering, a level contains all degrees of freedom that are directly

connected to the previous level and are not yet contained in any level themselves. For the

Sloan ordering, a level is constructed by taking the node with the highest node number

directly connected to the nodes of the previous levels. Then, the new level contains this

particular node and all nodes with a smaller node number not yet contained in any previous

level.

Once the levels have been established, the degrees of freedom are ordered by first taking

the velocity degrees of freedom of level 1 followed by the pressure degrees of freedom of

level 1. Then the same is done for level 2, etc. This ordering is also called p-last per level.

The result is a system matrix with a similar profile but smaller bandwidth as obtained by

a p-last type ordering while also avoiding zero pivots. fig. 4.5 shows the sparsity pattern of

a system matrix for Navier-Stokes using both a p-last ordering and Reverse Cuthill-McKee.

One thing we note right away is that ordering the degrees of freedom according to Reverse

(a) p-last ordering (b) Reverse Cuthill-McKee ordering

Figure 4.5: Sparsity pattern of Navier-Stokes example system matrix in two dimensions

Cuthill-McKee results in a system matrix with a dense diagonal, there is no more a zero

63

block located in the bottom right corner. Additionally, the bandwidth of the matrix is greatly

reduced (roughly by a factor 4 from 133 to 32 in the example shown in fig. 4.5), allowing for

better memory access patterns. Both of these plots were obtained through Firedrake.

Using such an ordering allows the use of ILU to solve the system [70]. Our experiments

show that it is possible to solve systems with Reynolds number as big as 8, as shown in

fig. 4.6. Once the Reynolds number goes past 8, this solver stalls out and fails to converge

2 4 6 8
Reynolds number

40

50

ru
n
ti

m
e

[s
]

point of breakdown of solver

RCM reordering + ILU

Figure 4.6: Time-to-convergence of RCM ordering + ILU with increasing Reynolds number

further for our model problem. This suggests that although ILU is indeed capable of solving

the Navier-Stokes equations using an ordering of the degrees of freedom according to Cuthill-

McKee, it is not sufficient for the added challenges introduced by placing a wind turbine in

the domain.

An extension of ILU was developed by Chen et al. [71], proposing a preconditioner based

on HILUSCI [72] (Hierarchical Incomplete LU-Crout with Scalability-oriented and Inverse-

based dropping) called HILUNG. They were successfully able to apply this method to the

2d driven cavity problem and 3D laminar flow over cylinder problem for large Reynolds

numbers of up to 5000. However, HILUSCI is currently only available as serial algorithm

limiting the scalability of this solver.

4.7 RECENT WORK

In recent years there has been some renewed work done to develop better precondition-

ers for the Navier-Stokes equations and, by extension, the Reynolds-averaged Navier-Stokes

equations. Voronin et al. [31] propose using monolithic geometric multigrid based on the

Q1isoQ2/Q1 discretization to develop new preconditioners. Both Vanka and Braess-Sarazin

64

smoothing are leveraged, and provide an extensive local Fourier analysis for predicting the

algorithmic performance. On conclusion in [31] is that monolithic multigrid using both

Braess-Sarazin and Vanka are indeed effective preconditioners; Braess-Sarazin performs bet-

ter than Vanka, although this is highly dependent on the underlying implementation.

Monolithic multigrid is known to demonstrate robust convergence for the Stokes equa-

tions [30]. So far the most successful multigrid approaches for saddle-point systems, like

the ones considered in this chapter, are based on geometric multigrid, as shown by Adler

et al. [88]. In subsequent works, Farrell et al. [89] present an extensive Fourier analysis of

additive Vanka as part of monolithic multigrid including an implementation, PCPATCH, of

the algorithm in PETSc [90].

The setup, as depicted in fig. 4.1, is a problem that is currently solved as part of the

WindSE software developed at the National Renewable Energy Laboratory (NREL). There

is a need to find an efficient and reliable solution to the RANS equations in the context of

the FEnICs/Firedrake software framework.

Many of the approaches described in section 4.6 are generally capable of solving the Navier-

Stokes and also the RANS equations, some even for relatively large Reynolds numbers.

However, each method therein struggles to varying degrees with our model problem. This

is in large part due to the sudden changes in velocity and pressure that occur around the

turbine. These sudden changes and the resulting turbulences contribute to the difficulty in

the problem.

4.8 RESTRICTED ADDITIVE SCHWARZ (RAS) + INCOMPLETE LU (ILU)

At the end of the 20th century, Cai and Sarkis [91] present restricted additive Schwarz

(RAS) as a variation to the classical additive Schwarz algorithms that reduces communication

and leads to faster convergence both in terms of iteration count and in CPU time. In

2006, Zhongze and Saad [92] propose a preconditioner, called SchurRAS, that is based on

applying a RAS algorithm to the LDU decomposition of the original system matrix, noting

that the only difficult operation is the Schur complement solve as the other operations of

this factorization are akin to restriction and prolongation operators. This preconditioner is

found to be up to twice as fast as simple RAS for a 2D model problem. Alcin et al. [62]

investigate the efficiency and scalability of a two-level Schwarz algorithm for compressible

and incompressible flows, showing that the use of RAS often results in good scalability and

performance. Liu et al. develop an efficient implementation in [93] of a RAS preconditioner

for sparse linear systems on the GPU showing that it is capable of reaching speedups of

up to 10 times compared to the CPU. Similarly, Yang et al. [94] present a study on using

65

GMRES on the GPU preconditioned by a parallel ILU(0) and ILUT algorithms based on

RAS, finding that they are able to achieve a speedup of up to 8 times relative to the CPU,

with ILU(0) offering better speedup, but ILUT offering better convergence for their model

problems.

Saberi et al. propose a restricted additive Vanka relaxation scheme in [95] that is used as

part of a geometric Multigrid cycle. This relaxation is based on RAS with the prolongation

operator replaced by a modified version that restricts prolongation to degrees of freedom in

the current set. When using restricted additive Vanka they are able to achieve reduction

rates comparable to multiplicative Vanka while being an additive algorithm. Ram et al. [96]

propose a hybrid parallel ILU preconditioner that is capable of taking full advantage of shared

memory parallelism in the ILU factorization step by using a multilevel nested dissection

reordering of the degrees of freedom. RAS preconditioned GMRES with their algorithms

achieve a parallel efficiency of more than 80%. Riva et al. [63] perform a local Fourier analysis

of additive Schwarz relaxation schemes in the context of multigrid methods. This analysis

reveals that RAS achieves comparable convergence rates to Additive Schwarz (AS), having

various favorable properties in terms of scalability and communication cost. They conclude

that RAS is generally a good alternative to consider.

4.8.1 Restricted Additive Schwarz (RAS)

We denote the adjacency graph of A to be the graph G = (V,E), where V is the set of all

vertices representing the binary relation that aij is nonzero between vertices i and j. Now

assume that the domain Ω is decomposed into n subdomains Ωδ
i where δ denotes the extent

to which the subdomains overlap. This decomposition is obtained from a partitioning of V

into p subgraphs V δ
i . The superscript δ indicates the overlap between the different partitions,

and the subscript i is the index of the respective subdomain. The overlap δ is defined as the

number of immediate neighbors of V 0
i (i.e., without overlap) that are included in V δ

i . This

allows us to define the restriction operator

Ri,δ : Ω→ Ωδ
i with Ri,δ(x) = xi,δ (4.63)

where xi,δ contains only components of z that belong to Ωδ
i . The prolongation operator is

correspondingly defined as,

Pi,δ : Ω
δ
i → Ω with Pi,δ(xi,δ) = x (4.64)

66

where x = Pi,δ(xi,δ) is the zero-extension of a vector xi,δ from Ωδ
i to Ω. The thus defined

restriction and prolongation operators allow us to express the local matrix Ai,δ corresponding

to the subdomain Ωδ
i as

Ai,δ = Ri,δAPi,δ (4.65)

With this notation we then denote the additive Schwarz preconditioner as

M =
n∑

i=1

Pi,δA
−1
i,δRi,δ (4.66)

where each subdomain is solved independently. The special case of the block Jacobi precon-

ditioner is obtained by setting the overlap to 0,

M =
n∑

i=1

Pi,0A
−1
i,0Ri,0. (4.67)

A combination of the additive Schwarz and block-Jacobi preconditioning schemes results in

the restricted additive Schwarz preconditioner (RAS),

M =
n∑

i=1

Pi,0A
−1
i,δRi,0 (4.68)

=
n∑

i=1

Pi,0(Ri,δAPi,δ)
−1Ri,0 (4.69)

where the subdomains overlap as measured by δ. The solution found on Ωi,δ is then restricted

to the non-overlapping part of the subdomain, Ωi,0, when prolonged to the global domain Ω.

This leaves us with the task of solving the inverse of the local matrix Ai,δ. This is often

performed approximately, especially for larger δ. A common way to solve this inverse problem

is by means of an incomplete LU factorization.

4.8.2 ILU(0)

ILU(0) takes the sparse matrix A and replaces all existing non-zero entries in A with

new values, such that the lower triangular matrix L is stored in the lower triangular part

of A (with the diagonal implicitly assumed to be a unit diagonal) and the upper triangular

matrix U is stored in the upper triangular part of A (including the diagonal). A pointwise

factorization of ILU(0) is given in algorithm 4.4

67

Algorithm 4.4: Point-wise ILU(0) factorization

1 for i← 2 to n do
2 for k ← 1 to i− 1 do
3 if (i, k) /∈ K then
4 continue
5 end
6 aik = aik/akk
7 for j ← k + 1 to n do
8 if (i, j) /∈ K then
9 continue

10 end
11 aij = aij − aikakj
12 end

13 end

14 end

4.8.3 ILU(k)

ILU(0) has the advantage that the resulting factorization has the same sparsity pattern

as the original matrix and is stored in the same memory. However, this comes at the cost of

accuracy. ILU(k) is similar to ILU(0) except that it allows for fill-in to occur. The integer

k defines the amount of fill-in to occur, with a larger k resulting in more fill-in. The initial

level lij of each entry of A is defined by

lij =

0, (i, j) ∈ K

∞, (i, j) /∈ K
(4.70)

This means that the nonzero entries of A have an initial level of 0, and all other entries have

a level of infinity. The levels are then updated by

lij = min(lij, lip + lpj + 1) (4.71)

The level of a nonzero entry always remains unchanged, but certain zero entries are updated

to a smaller positive level. If the new level is greater than the cutoff k, this entry is elim-

inated. Only entries whose levels remain below the cutoff k throughout the iteration serve

as extension to the original sparsity pattern K, resulting in a more accurate but less sparse

factorization. algorithm 4.5 gives an algorithmic overview of the ILU(k) factorization.

68

Algorithm 4.5: ILU(k) factorization

1 For all nonzero entries in the nonzero pattern K define lij = 0
2 for i← 2...n do
3 for l← 1...i− 1 do
4 if lil > k then
5 continue
6 end
7 ail = ail/all
8 for j ← l + 1...n do
9 aij = aij − ailalj

10 lij = min(lij, lil + llj + 1)

11 end

12 end
13 if lij > k then
14 aij = 0
15 end

16 end

4.9 SOFTWARE

We make use of various existing solver libraries and frameworks:

hypre [97, 98] software library providing implementations of a wide range of high perfor-

mance preconditioners and solvers for large and sparse linear systems of equations,

with a particular emphasis on massively parallel computers.

PETSc [99–101] software library that includes a large suite of scalable solvers for linear and

nonlinear equations and various other algorithms. It also is capable of interacting with

other software libraries - like hypre - able to also take advantage of their capabilities.

Firedrake [102] overarching framework we use for implementing our solvers and precondi-

tioners. Firedrake is “an automated system for the solution of partial differential equa-

tions using the finite element method (FEM)” [103]. Firedrake brings native support

for a range of numerical solvers and provides a convenient interface for incorporating

PETSc with all of its options and features.

4.10 PROPOSED SOLVER

In order to solve our model problem we revisit the LDU factorization presented in sec-

tion 4.6.1 and design a new solver by combining Newton with GMRES, AMG, and RAS/ILU

69

by creating a new PETSc interface. The preconditioning is based on the LDU factorization

of the system matrix in eq. (4.49).

4.10.1 Revisiting LDU Decomposition

For this attempt we revisit the approach described in section 4.6.1, starting with the LDU

block-decomposition of the system matrix,

A =

[
F BT

B 0

]
= LbDbUb =

[
I 0

BF−1 I

][
F 0

0 S

][
I F−1BT

0 I

]
(4.72)

with the Schur complement S = −BF−1BT . The clear advantage of this approach is the

lack of need to invert the full system matrix. Instead, the only two inverses required for

an exact solve are the inverse of the velocity block matrix, F , and the inverse of the Schur

complement matrix, S, which is the source of error in this part of the algorithm. However,

there is another source of potential error that needs to be considered, namely the error caused

by the nonlinear iteration. As described in section 4.5, the two most common choices for

linearizing a nonlinear system are Picard and Newton linearization. Due to the nonlinearity

arising from our model problem, it is necessary to use the more general Newton linearization

over the simpler Picard linearization. In addition, Newton linearization exhibits better

convergence behavior [104].

4.10.2 Solver Design

Taking all of these considerations into account we design a solver algorithm that attempts

to solve our model problem as described in algorithm 4.6. A visualization of the solver giving

a high-level overview is given in fig. 4.7. Since we are working with a nonlinear system we

use a Newton iteration with a linesearch to linearize the system at each iteration. Once

linearized we apply a GMRES solver with its preconditioner based on the LDU factorization

of the system matrix. Once the LDU factorization has been obtained, we use GMRES

to solve for both the action of the velocity block and the action of the Schur-complement

block. These two GMRES solve are both preconditioned with algebraic multigrid (AMG)

that uses RAS/ILU as relaxation scheme on each level. An algorithmic description of the

full algorithm is given in algorithm 4.6. Accessing the RAS/ILU algorithm in hypre from

Firedrake through PETSc is currently not possible with the latest stable release of PETSc.

To enable this a new interface in PETSc first had to be implemented [105] in order to expose

70

Newton (linesearch)

nonlinear solver

GMRES

linear solver

LDU factorization

preconditioner

GMRES

Schur-complement solve

GMRES

velocity solve

AMG + RAS/ILU

preconditioner

AMG + RAS/ILU

preconditioner

Figure 4.7: High-level overview of the solver.

the solver in such a way that we are able to interact with it through the normal solver

interface in Firedrake.

Using this solver we are able to solve systems with Reynolds numbers up to around

R = 500. Figure 4.8 shows such a solve for a test run using 4 MPI ranks and a 30× 30× 30

mesh resulting in about 710 000 degrees of freedom. We observe the solver to be consistent

in reducing the error until it achieves a residual convergence of 10−6. However, the solver

requires a long time to complete with a total runtime of more than 12 hours. This is to

be expected, however, as we only used 4 MPI ranks, thus dividing our full domain into 4

subdomains on which we run an ILU(0) solve. Each subsolve is done with around 150 000

degrees of freedom and thus is very slow. Increasing the MPI rank and thus reducing the

subdomain size will improve the time required per ILU solve, however, it comes at a cost of

increased iteration count as we reduce the accuracy of our solver by breaking it down into

an increasing number of non-overlapping domains.

To asses the performance of our solver we compare it to a direct solver that uses Newton

71

Algorithm 4.6: High-level overview of (RA)NS solver

1 Set up system matrix A
2 Set up right hand side bu and bp
3 Choose initial guess u and p. Compute initial residual resinit = ∥ [bu; bp]T −A [u; p]T ∥
4 Set current residual res = resinit
5 Set tolerance tol
6 while res

resinit
> tol do

7 Newton linearization to obtain Alin

8 LDU factorization of Alin

9 for i = 1..15 do
10 Precondition velocity system with RAS/ILU
11 GMRES iteration for velocity solve

12 end
13 for i = 1..15 do
14 Precondition Schur-complement with RAS/ILU
15 GMRES iteration for Schur-complement solve

16 end

17 Update current residual res = ∥ [bu; bp]T − A [u; p]T ∥
18 end

for linearization and GMRES preconditioned by LU using the mumps package [106] for the

linear solve. Since a full LU factorization is memory intensive and slow, we reduce the mesh

size to a size of 25 × 25 × 25 resulting in a little over 415 000 degrees of freedom, using a

total of 50 MPI ranks on Delta. Running both our solver and a solver based on mumps to a

convergence tolerance of 10−5 for a Reynolds number of R = 100 results in the solver with

mumps requiring a total of 96 iterations and 3495 seconds (about 1 hour). If we run the

same problem with our solver we reach convergence in 6 iterations and 860 seconds (about

14 minutes). This suggests that the added complexity yields better convergence and lower

runtime.

4.10.3 Profiling the Solver

For profiling the solver, we first profile PETSc to see which parts of the solver are re-

sponsible for how much of the overall runtime. A flamegraph visualization of that profile

is shown in fig. 4.9. fig. 4.10 shows a breakdown of the largest contributors of the overall

runtime of the solver As can be seen from fig. 4.10 close to 80% of the overall runtime is

spent in the AMG+RAS/ILU preconditioner. In turn timing the various parts of the AMG

cycle, we observe that about 80% of that time is spent in relaxation, with the remaining

72

0 10000 20000 30000 40000

runtime [s]

10−6

10−5

10−4

10−3

10−2

re
si

d
u

al

4 MPI, 32× 32× 32, R = 500

Figure 4.8: RANS solver applied to model problem with R = 500.

Figure 4.9: Flamegraph visualized with speedscope [107].

time mostly spent moving between the different meshes. Thus, a more detailed profile of

the RAS/ILU algorithm is needed to obtain a detailed and complete understanding of where

all this time is spent. Timing the various parts that make up the RAS/ILU algorithm, we

obtain the timings as shown in table 4.1. The timings are taken for running one iteration

of RAS/ILU for the finest level in the AMG algorithm. As observed in table 4.1 there are

three parts that are responsible for the largest amount of time. The forward solve and

backward substitution combined make up 58.5% of the overall runtime. These two parts

of the algorithm are made up of a couple for loops facilitating this solve. They are already

implemented in an optimal way given the underlying data structures. Most of the remain-

ing runtime, 39%, is spent in computing the residual. This is an expensive operation as it

involves communicating data between the different subdomains. A further breakdown of the

various parts of this algorithm is shown in table 4.2. As can be seen in table 4.2 almost all

of the time, 96.29%, is spent performing the computations, which is overlapped with any

necessary communication. This, however, is rather unsurprising as these runs are done on a

small test machine with only 4 MPI ranks. This results in the local RAS domains to have

73

98% fieldsplit preconditioner

80% solving Schur complement 17.8% velocity solve

73% AMG+RAS/ILU 6.1% MatMult 16.6% AMG+RAS/ILU 1.2% MatMult

Figure 4.10: Breakdown of PETSc timings listing the largest contributor to the overall
runtime, given in percentage points of the overall runtime.

time [ms] percentage

setup 0.002 0.1
computing residual 36.218 39.0
communicate 3.062 3.3
forward solve 19.706 21.2
backward substitution 34.625 37.3
clean up 0.205 0.2

Table 4.1: Breakdown of RAS/ILU algorithm by timing various parts, 30×30×30 elements
spread across 4 MPI ranks.

around 170 000 degrees of freedom, which are very large systems to be solved with ILU.

The obvious solution is to increase the number of MPI ranks in order to reduce the local

problem size. This, however, comes at the expense of convergence as AMG+RAS/ILU with

an increasing number of Schwarz-domains has a reduced convergence rate for solving such

a system as a single global ILU solve. Figure 4.11 shows how our solver scales with varying

number of MPI ranks. The numerical values behind fig. 4.11 are found in table 4.3. As can

be seen from both fig. 4.11 and table 4.3, increasing the number of MPI ranks does indeed

decrease the required runtime. However, the runtime does not scale at the same rate as the

number of MPI ranks is scales. Up to 30 MPI ranks the runtime scales noticeably worse than

the number of MPI ranks, due to both an increase in required communication and worse

convergence behavior when more RAS subdomains are used. Both of these, however, are

to be expected. Once the number of MPI ranks becomes high enough, the runtime scaling

matches much more closely to the scaling of the number of MPI ranks.

74

time [ms] percentage

setup 0.016144 0.04
pack send data 0.028518 0.08
start communication 0.006551 0.02
local matvec 34.872804 96.29
end communication 0.066910 0.18
remote matvec 1.224446 3.38

Table 4.2: Breakdown of computing residual as part of RAS/ILU algorithm.

1 10 20 30 40 50
MPI ranks

103

ru
n
ti

m
e

[s
]

Figure 4.11: Scaling of RANS solve for R = 10 for increasing number of MPI ranks.

Knowing that the majority of the runtime of the solver is spent in the preconditioning

scheme, AMG with RAS/ILU, we use a cost analysis based on this algorithm to learn more

about the behavior of our solver overall.

4.10.4 Performance Model

To better understand the behavior of the AMG+RAS/ILU preconditioner scheme and

how it behaves with varying problem size and varying number of MPI ranks we establish a

performance model of the algorithm. AMG consists of multiple steps as it consists of multiple

levels. The total solve time, thus, is a combination of the time spent on the different levels

in the cycle. Let l be the total number of levels in the algorithm, then we decompose the

overall time by

T =
l−1∑
i=1

(T i
solve + T i

restrict) + T l
solve +

l−1∑
i=1

(T i
solve + T i

interpolate), (4.73)

75

MPI ranks scaling runtime [s] scaling

1 - 6186.288 -
10 10.00 1725.585 3.59
20 2.00 1367.729 1.26
30 1.50 990.315 1.38
40 1.33 759.262 1.30
50 1.25 628.377 1.21

Table 4.3: Numerical values for solving RANS problem with R = 10 for increasing number
of MPI ranks.

with T i
solve the application of the relaxation scheme, T i

restrict the restriction from level i to level

i− 1, and T i
interpolate the interpolation from level i− 1 to i. We work with a symmetric setup

with the same number of pre- and post-relaxation steps. With his knowledge we simplify

this equation slightly,

T =
l−1∑
i=1

(2T i
solve + T i

restrict + T i
interpolate) + T l

solve. (4.74)

In order to be able to set up the model as shown in eq. (4.74) we need to describe the

three parts, T i
solve, T

i
restrict, and T i

interpolate. T
i
solve is an application of RAS/ILU at that level.

Let N be the average number of degrees of freedom per Schwarz domain, NΩ the average

number of degrees of freedom sitting along the boundary between neighboring domains and

thus need to be communicated, and we know that most rows of the system matrix contain

97 nonzeros, stored in a sparse matrix format, then we define the performance model for

RAS/ILU to consist of:

1. Compute the current local residual: res = βb+ αAx.

• flops: 97N + 2N

• reads: 101N doubles

• writes: N doubles

2. Pack the send data.

• flops: 0

• reads: NΩ doubles

• writes: NΩ doubles

76

3a. Local ILU solve: forward solve followed by backward substitution.

• flops: 97N/2

• reads: 97N/2 +N doubles

• writes: N doubles

3b. Communicate the boundary data overlapped with local computation. The communi-

cation is modeled using the max-rate performance model [17].

T = tc + nrαl +
knb

min(RN , kRC)
(4.75)

with tc the time for copying the data, nr the number of messages a rank is sending, αl

the latency introduced by MPI per message, k the number of processes, nb the number

of bytes sent per process, RN the injection bandwidth, and RC the rate that can be

achieved by each process in sending or receiving a message.

4. ILU solve with received boundary data: forward solve followed by backward substitu-

tion.

• flops: 97NΩ/2

• reads: 97NΩ/2 +NΩ doubles

• writes: NΩ doubles

5. Update global solution: u = βuupd

• flops: N

• reads: 2N doubles

• writes: N doubles

The restriction operator, denoted in eq. (4.74) by T i
restrict, consists of two parts:

1. Computing the current residual.

• flops: 97N

• reads: 97N + 2N doubles

• writes: N doubles

2. Restrict the problem to the next coarser level.

77

• flops: N

• reads: N doubles

• writes: Nc doubles, whereNc the number of degrees of freedom on the next coarser

level

The interpolation operator, denoted in eq. (4.74) by T i
interpolate, consists mostly out of the

actual interpolation of the data from the coarser level and correcting the solution on the

current level. This is summarized as:

• flops: N

• reads: Nc doubles, where Nc the number of degrees of freedom on the coarser level

• writes: N doubles

With all of these parts in place we only need some metrics for our test machine, Delta [108].

These values have been obtained using the BabelStream benchmark [109]:

• Peak flop rate: 573 GFLOP/s for CPU, 9472 GFLOP/s for GPU

• Peak read speed: 27.78 GB/s for CPU and 1361.50 GB/s for GPU

• Peak write speed: 25.96 GB/s for CPU and 1330.26 GB/s for GPU

Having obtained these values we are now able to calculate a theoretical runtime for any

given problem size and number of MPI ranks. For instance, fig. 4.12 shows the predicted

timings for a problem of size 30 × 30 × 30 with measured timings for various numbers of

MPI ranks added in. As expected the runtime of the algorithm scales rather well with the

number of MPI ranks. We also see how communication becomes more noticeable relative to

the overlapped local computations as we add in more and more MPI ranks. Even though

our measured timings lie above the line with the predicted timings, they are generally within

a factor of 2 of the predicted timings and exhibit similar behavior and scaling. Given the

complexity of the algorithm we consider this to be overall a good fit.

What the model does not tell us is the expected convergence, and consequently, time to

converge. However, the model does provide a prediction of the effect on the overall solver

with a change in either problem size of number of MPI ranks.

Even though our timings scale well with the number of MPI ranks, adding more MPI ranks

degrades the convergence of this solver. We were able to solve a problem with a Reynolds

number of R = 500 with 4 MPI ranks (albeit very slow), with 50 MPI ranks we are not able

to go far beyond R = 400. We attempt to improve this situation with homotopy.

78

1 2 3 4 5 6 7 8 10 20 30 40 60
MPI ranks

102

103

ru
n
ti

m
e

[m
s]

performance model

measured runtime

Figure 4.12: Performance model for AMG+RAS/ILU for problem of size 30× 30× 30 with
MPI ranks ranging from 1 to 60.

4.10.5 Homotopy or Continuation Methods

Homotopy (also known as continuation methods) [110–114] is an attempt to combine

the capabilities of a solver to solve an “easy” version of some problem with a continuous

transitioning from the easy problem to the target (“hard”) problem by using information

from previous runs to jump-start the next runs.

Given our model problem with a Reynolds number that is easy to solve with, R. Call the

target Reynolds number that we want to solve with R̂. Expressing our problem setup as

the function G, we then create a new problem as

G(R) = λG(R) + (1− λ)G(R̂) (4.76)

with λ ∈ [0, 1]. Setting λ = 1 equates to solving our model problem for the “easy” Reynolds

number, R = R. Setting λ = 0 equates to solving our model problem for the “hard”

Reynolds number, R = R̂. Thus, changing λ step-by-step from 1 to 0 allows us to transition

from the “easy” to the “hard” problem in a stepwise manner. For each new λ we make use

of the solution to the problem with the old λ to give us a good initial guess for the harder

problem.

The idea behind homotopy is based on the fact that Newton algorithms require an initial

guess close to the solution in order to converge. Performing only a small change to our model

problem should not alter our solution space too much, leaving the old solution as a good

initial guess that is “close” to our new solution.

Adding homotopy to our solver algorithm as described in algorithm 4.6 results in the

79

algorithm as given in algorithm 4.7. The main challenge with using such an algorithm is

Algorithm 4.7: Homotopy algorithm

1 Set starting Reynolds number Rinit and target Reynolds number Rtarget

2 Choose ω ∈ (0, 1] := step size damping
3 Set τtarget = convergence tolerance
4 Set τstep = intermediate convergence tolerance
5 Set x = x0 = initial guess
6 Set R = Rinit

7 while R < Rtarget do
8 if not first iteration then
9 Compute R = R +∆R

10 end
11 if R < Rtarget then
12 Set τ = τstep
13 else
14 Set τ = τtarget
15 end
16 Construct nonlinear form for current R
17 Compute res0 := initial residual
18 while resk

res0
> τ do

19 Perform Newton linearization with linesearch
20 for steps← 1..10 do
21 Preconditioner: LDU factorization
22 AMG+RAS/ILU for action of F−1

23 AMG+RAS/ILU for action of S−1

24 Perform fGMRES step

25 end

26 end

27 end

to figure out the optimal value for τstep [113]. To derive a theoretical bound we start by

constructing a differential problem,

unew = u(R) + u(1)(R)τstep, (4.77)

which defines how a new initial guess can be constructed by using the previous solution. We

then denote the typical weak formulation of the Navier-Stokes equations,

µa(u,v) + c(u,u,v) + b(v, p) + b(u, q) = ⟨f ,v⟩ ∀v ∈ V, q ∈ P. (4.78)

80

Formally differentiating this with u(k) = dku
dRk and p(k) = dkp

dRk ,

µa(u(k),v)+c(u(k),u,v) + c(u,u(k),v) + b(v, p(k)) + b(u(k), q)

= Lk(u
(k−1), . . . ,u(1),u;v;Re) ∀v ∈ V, q ∈ P, k = 1, 2, . . . (4.79)

which is rearranged to obtain

Lk(u
(k−1), . . . ,u(1),u;v;R) =

k−1∑
j=0

αkj

(−R)k+1−j
a(u(j),v)

−
k−1∑
j=1

βkjc(u
(j),u(k−j),v) ∀v ∈ H1

0 (Ω) (4.80)

with u(0) = u and both αkjand βkj not depending on the Reynolds number R. If we, then,

choose v = u(k) and q = −p(k) and apply the properties of the bilinear norms, we obtain

σ

R
∥u(k)∥ ≤

k−1∑
j=0

αkj

Rk+1−j
∥u(j)∥+ γ

k−1∑
j=1

βkj∥(j)∥ · ∥u(k−j)∥ (4.81)

with σ = 1− γ∥u∥R. If we assume we have a solution u(R) with Rtarget > R, then

unew = u(R) + u(1)(R)τstep (4.82)

where τstep = R −R and u(1) the solution to the differentiated problem given in eq. (4.80)

with k = 1 and R = R. The standard mean value theorem is now applied to get the relation

∥u(R)− unew∥ = ∥u(R)− u(R)− u(1)(R)τstep∥

≤ sup
R≤ξ≤R

1

2

∥∥∥∥ d2udR2
(ξ)

∥∥∥∥ (∆R)2. (4.83)

where ξ ∈ [R,R] is such that the tangent at ξ is parallel to the secant line through the two

endpoints. If 0 < σ̂ ≤ σ(ξ) < 1 for ξ ∈ [R,R],then with k = 2 we have that∥∥∥∥ d2udR2
(ξ)

∥∥∥∥ ≤ 4

R
2
σ̂3
∥u(ξ)∥ (4.84)

which is then plugged into eq. (4.83) to obtain

∥u(R)− unew∥ ≤
2

R
2
σ̂3
∥u(R)∥(∆R)2. (4.85)

81

This relation is assured if we have that

∥u(R)− unew∥ ≤
σ̂

2
∥u(R)∥. (4.86)

Combining both equation eq. (4.85) and eq. (4.86) we obtain that unew lies in the attraction

ball at R whenever

τstep < R
σ̂2

2
. (4.87)

Actually determining the value of this bound, however, is difficult. For instance, near bi-

furcation points we need σ̂ → 0 resulting in a very small step size. One way to reliably

determine the optimal step size is by numerical experiment.

The potential of homotopy can be best illustrated by looking at an example given in

table 4.4. Solving our model problem for R = 400 takes a total of 10 nonlinear iterations

continuation without continuation
Reynolds number # nonlinear iteration time [s] # nonlinear iteration time [s]

100 3 664 3 664
400 2 481 10 2214
500 4 949 - -
600 11 2649 - -

Table 4.4: Comparison of continuation approach to direct solves.

with a total runtime of 2214 seconds (about 37 minutes). However, first solving for R = 100

and then using the obtained solution to solve for R = 400 takes 3 nonlinear iterations and 664

seconds (about 11 minutes) for the first solve and then 2 iterations and 481 seconds (about

8 minutes) for the seconds solve, for an overall total of 1145 seconds (about 19 minutes).

Thus, adding the intermediate solve at R = 100 cuts the required time to convergence for

the problem with R = 400 roughly in half.

Using homotopy we are also able to push our solver to higher Reynolds numbers. Contin-

uing on with the above problem it is then possible to solve the problem with R = 500 with

another 4 iterations and 949 seconds (about 16 minutes), and the problem with R = 600

with another 11 iterations and 2649 seconds (about 44 minutes). Once R = 700 is reached,

however, our solver hits a wall almost instantly and struggles to converge any further.

Since our solver works well for small to moderate Reynolds numbers, the source of insta-

bility in iteration is often associated with errors arising from aliasing [115]. These errors arise

from the fact that a discrete grid is used to represent our nonlinear term and are typically

due to an insufficient quadrature degree of the convective term. Figure 4.13 and table 4.5

82

show the effect of the quadrature rule for R = 100 when run up to a convergence tolerance

of 10−6. As can be seen from both fig. 4.13 and table 4.5 the quadrature degree does indeed

103

runtime [s]

10−6

10−5

10−4

10−3

10−2

re
si

d
u

al

degree = 4

degree = 5

degree = 6

degree = 7

degree = 8

degree = 9

degree = 10

degree = 11

degree = 12

Figure 4.13: Effect of quadrature degree on convergence, 30 × 30 × 30 elements, R = 100,
tol = 10−6.

quadrature degree iteration count runtime [s] final residual norm

4 5 1102 2.96× 10−7

5 5 1110 2.98× 10−7

6 5 1135 8.97× 10−7

7 5 1131 8.97× 10−7

8 6 1379 5.64× 10−7

9 6 1371 5.64× 10−7

10 5 1154 8.55× 10−7

11 5 1156 8.55× 10−7

12 8 2429 9.56× 10−7

Table 4.5: Effect of quadrature degree on convergence, 30× 30× 30 elements, R = 100, tol
= 10−6.

have an effect on the time-to-convergence. Choosing the wrong quadrature degree can lead

to a doubling in time-to-convergence, as a careful balance between a high enough degree

to be able to represent the underlying polynomials exactly and a low enough degree to not

introduce unnecessary computational work. As we are working with Q2/Q1 Taylor-Hood

finite elements in three dimensions, we expect a quadrature degree of 6 to be sufficient to

avoid additional error terms. As can be seen from table 4.5, there is very little different in

the required time-to-convergence for quadrature degrees 4 to 7. The choice of quadrature

83

degree only has a minor, if any, impact on the overall convergence behavior, requiring the

same number of non-linear iterations and resulting in almost the same final residual norm.

Based on this experience we set up our solver to solve our model problem for a Reynolds

number of 1000. We combined various pieces of our solver that we know already by setting

the first two intermediate Reynolds numbers to be 100 and 400. Next we try R = 800,

followed by a value of 900 and 1000. The convergence tolerance for the intermediate Reynolds

numbers was set to 10−4 with the final tolerance at R = 1000 set to 10−6. The result is shown

in fig. 4.14. As can be seen from fig. 4.14, the solver initially works very well for R = 100 and

0 2000 4000 6000

runtime [s]

10−4

10−3

10−2

re
si

d
u

al

R = 100

R = 400

R = 800

point of stalling out

Figure 4.14: Running our solver from R = 100 to R = 1000 with intermediate Reynolds
number of 400 and 800.

subsequently R = 400, confirming the findings presented in table 4.4. However, the next

solve for R = 800 starts out with an initial guess very close to the convergence tolerance,

though it struggles to make any further progress and essentially stalls out at this point.

4.10.6 Dynamic Solver

Finding a way to resolve the issue that the solver gets stuck when the “wrong” next

Reynolds number is chosen required making the solver dynamic. After solving an initial

system, we first increase the Reynolds number by a fixed amount and then run the solver

for a new problem. There are three possible scenarios that arise:

1. the old solution is still a good enough (i.e., within the given tolerance) solution for the

new problem;

84

2. the solver might stall out, which we define to be the case when consecutive nonlinear

steps differ by less than 10−4;

3. the solver converges.

If the solver does not converge we apply increasing simplifications to the solver in order to

get it to converge. This process is repeated until we reach the target Reynolds number. A

flow chart of how exactly the solve works in practice is given in fig. 4.15, with an algorithmic

description of the solver provided in algorithm 4.8.

After setting up some initial variables, we solve our initial model problem for a Reynolds

number of R = 100. We know from the previous analysis that this is a problem our solver

is well capable of handling. After each completion of the solver we check whether the solver

converged or stalled. If it converged, we check if any iterations were performed, as it is

possible that the solution to the previous problem is a sufficient solution for our current

problem. In that case we increase the Reynolds by 50 and restart the solver. If one or more

iterations were performed we increment the Reynolds number by 150 and restart the solver

using the current solution as new initial guess.

If the solver did not converge then at first we reduce the Reynolds number increment from

150 to 100, and, if the solver still does not converge, we further reduce it to 50. If the solver

continues to stall, we reduce the Newton damping factor slightly and/or further reduce the

Reynolds number increment to 25. If despite all our efforts the solver still does not converge

we consider the solve to have failed.

As long as we are not solving the problem with our target Reynolds number it is sufficient

to run our solver to a looser convergence tolerance. In practice we use 10−4 as convergence

tolerance for the solves with the intermediate Reynolds numbers, and 10−6 for the solves

with the final target Reynolds number.

To test this dynamic solver we ran it on Delta with a total of 768 MPI ranks across 12

nodes (64 ranks per node) for a problem of size 40 × 40 × 40, resulting in almost 2 million

degrees of freedom in the global mesh. The results of this run is shown in fig. 4.16 with a

summary presented in table 4.6. We see that the solver starts out strong, but stalls out

first at R = 600. After reducing the Reynolds number the solve succeeds for R = 550. The

solver struggles to move past R = 750 but with increasing simplifications and modifications

to the problem it eventually succeeds. The final solve for R = 1000 at first starts out slow,

before it abruptly converges rapidly to the final tolerance of 10−6. From this data we can

see that our solver indeed works as intended, it is capable of tuning its own parameters to

overcome stalls.

It is worth noting that such an autonomous run of the solver does not need to be done

85

every time. Once a successful continuation path is known, the solver can be instructed as

to what path to choose. This allows the solver to skip all intermediate failing solves, and

reduces the required runtime in this case by about 30%.

This solver, even though we have shown it to be working for our model problem, is still

not a fast solver. With a prescribed continuation path the solver still requires about 8 hours

to complete. There are a many tweaks and optimizations possible to further improve on this

solver. See section 4.10.8 for a list of several possible future avenues to pursue.

4.10.7 Conclusions

In this chapter we looked at the RAS/ILU algorithm in the context of starting the devel-

opment of a solver for the RANS equations arising in the context of wind turbine modeling.

We observed the challenges posed by such a problem and how the commonly used solvers and

preconditioners struggle to reach convergence for small to moderately high Reynolds num-

bers. We then presented an overview of both the RAS and the ILU algorithms and showed

how in recent years RAS/ILU has increasingly become an intriguing and competitive choice

of solver.

Working in the context of Firedrake, PETSc, and hypre, we explored the necessary steps

and additions to the respective libraries that were necessary in order to implement these

algorithms and use them as part of a larger solver. The solver we designed is comprised

of several different parts, including Newton linearization with linesearch, GMRES for the

linear solves, and AMG with RAS/ILU as a relaxation schemes to precondition some of the

GMRES solves. We presented results to show that this solver is indeed well capable of solving

the model problem for moderately high Reynolds numbers. Profiling the solver showed that

the majority of time is spent performing AMG with RAS/ILU relaxation. A performance

model for this algorithm showed that our measured timings for this preconditioner are indeed

not far off from our predicted timings. This model gave us a better understanding of how

the algorithm behaves for different problem sizes and number of MPI ranks.

Next we looked at homotopy and showed that instead of directly solving our target problem

it is advantageous to solve one or more easier intermediate problems. This can not only cut

down the required time-to solution, but also enables the solve of more difficult problems

than we could solve without homotopy.

At the moment, Firedrake is not ready to run on the GPU, restricting our experiments to

the CPU. However, work on adding GPU capabilities to Firedrake is in progress and, once

completed, will allow the use of our interface in PETSc to access the GPU implementation

of AMG and RAS/ILU in hypre. The parallel nature of these algorithms suggests that they

86

are likely well suited for GPUs.

4.10.8 Future Directions

In this chapter we explored various techniques for solving our model problem. However,

there are various approaches and techniques that we did not explore but that might provide

valuable and interesting improvements to the solver. Some of the possible avenues to pursue

in the future further include:

• pseudo time-stepping [116]: Even though we are considering steady-state problems,

pseudo time-stepping is an approach that solves for the steady-state solution by using

a time-stepper to evolve an initial guess to the steady-state problem. One of the likely

difficulties with this approach is that small time steps make the pressure term very

stiff.

• arc-length continuation model [110]: There are variations to the homotopy approach

as described here. In particular, when progressing along the path for the Reynolds

numbers, if the solver stalls then a different way to progress other than simply increas-

ing the Reynolds number is to progress along the arc-length S of the solution. It is

possible to show that a critical point of the problem

F (u,R) = 0 (4.88)

is a regular point of the following problem: Find u(S), R(S) such that

F (u,R) = 0 and

∥∥∥∥dudS
∥∥∥∥2 + ∣∣∣∣dRdS

∣∣∣∣2 = 1 in R (4.89)

• projection with 2 steps [117, 118]: Another possible approach is to solve the problem

in 2 steps. First, we solve u = F−1rhs where u is the velocity part of the solution.

Next, we project the thus-found solution onto the divergence-free space, and iterate

back to the first step.

• overset meshes [119]: Looking at the problem setup and the solution, it is obvious that

most of what we are interested in is happening around and behind the turbine. Thus,

we do not necessarily need the same mesh resolution everywhere in our domain. It is

possible to cover the full domain in a mesh with low resolution and overlay a grid with

higher resolution around the areas of interest. This allows us to focus our efforts on

what we are most interested in modeling.

87

• Newton linearization is a well understood algorithm that is currently used for similar

problems at NREL. It was chosen in part for that reason so that we can focus our

attention on the preconditioning algorithms. However, there exists a wide range of

other nonlinear solvers that could possibly be combined with a preconditioning scheme

based on RAS/ILU for such a problem.

4.11 RESOURCES

The sample Firedrake code used for the analysis in this chapter is listed in appendix A.

The modified PETSc interface to include access to the RAS/ILU algorithm in hypre is found

in the git repository at https://github.com/luspi/petsc.

88

https://github.com/luspi/petsc

Start

damp = 1
R = 100
dR = 150
tun = 0
τ = τstep

Solve with current
R to tolerance τ

converged?at target R?

damp = 1
tun = 0

iterations?

dR = 150

R = R − dR
dR = dR + 50

R = R − dR

tuning level?

dR = 100
tun = 1

dR = 50
tun = 2

dR = 50
damp = 0.9
tun = 3

dR = 25
damp = 1
tun = 4

dR = 25
damp = 0.9
tun = 5

Solve failed

R = min(Rtarget,R + dR)

R = Rtarget?τ = τfinal τ = τstep

Solution found

yes

no

0

1+

yes

no

0

1

2

3
4

5

noyes

Figure 4.15: Flow chart of dynamic solver, with damp the damping factor, dR the next
update to the Reynolds number, tun the level of tuning after failed solves, and τ the con-
vergence tolerance.

89

Algorithm 4.8: Dynamic solver

1 Set initial variables: damp = 1.0, R = 100, dR = 200, tun = 0, τ = τstep
2 while solution not yet found do
3 Run solver with current Reynolds number, R, to tolerance, τ .
4 if Solve has converged then
5 if R == Rtarget then
6 Mark solution as found.
7 break;

8 else
9 Reset variables damp = 1, tun = 0.

10 if iteration count < 3 then
11 Revert Reynolds number, R = R − dR.
12 Increase step size, dR = min(Rtarget −R, dR + 50).

13 else
14 Reset step size, dR = 200.
15 end

16 end

17 else
18 Revert Reynolds number, R = R − dR.
19 if tun == 0 then
20 Reduce Reynolds step size, dR = 100, and increase tuning level, tun = 1.
21 else if tun == 1 then
22 Reduce Reynolds step size, dR = 50, and increase tuning level, tun = 2.
23 else if tun == 2 then
24 Reduce damping factor, damp = 0.9, and increase tuning level, tun = 3.
25 else if tun == 3 then
26 Reduce Reynolds step size, dR = 25, reset damping factor, damp = 1.0,

and increase tuning level, tun = 4.

27 else if tun == 4 then
28 Reduce damping factor, damp = 0.9, and increase tuning level, tun = 5.
29 else
30 Mark solve as failed.
31 break

32 end

33 end
34 Calculate new Reynolds number, R = min(Rtarget,R + dR)
35 if R == Rtarget then
36 Set tolerance, τ = τfinal
37 else
38 Set tolerance, τ = τstep
39 end

40 end

90

0 10000 20000 30000 40000

runtime [s]

10−6

10−5

10−4

10−3

10−2

re
si

d
u

al

R = 100, damping = 1

R = 250, damping = 1

R = 450, damping = 1

R = 600, damping = 1

R = 550, damping = 1

R = 700, damping = 1

R = 850, damping = 1

R = 800, damping = 1

R = 750, damping = 1

R = 750, damping = 0.9

R = 900, damping = 1

R = 1000, damping = 1

Figure 4.16: Convergence behavior of dynamic solver from R = 100 to R = 1000.

R damping factor tolerance τ dR # iterations total time [s]

100 1 10−4 - 3 638.0
250 1 10−4 150 1 208.0
400 1 10−4 150 0 0.6
450 1 10−4 200 2 389.0
600 1 10−4 150 19 3906.0
550 1 10−4 100 9 1773.0
700 1 10−4 150 35 7109.0
850 1 10−4 150 30 5881.0
800 1 10−4 100 5 960.0
750 1 10−4 50 13 2618.0
750 0.9 10−4 50 60 12 233.0
900 1 10−4 150 9 1743.0
1000 1 10−6 150 28 7414.0

Total 214 44 872.6

Table 4.6: Continuation path of dynamic solver from R = 100 to R = 1000 with failing
solves highlighted.

91

CHAPTER 5: CONCLUSION

In the preceding chapter an overview of various research topic has been given that together

compose my work on improving the performance of iterative algorithms in various ways. In

particular we considered three parts.

1. Halo exchanges across large heterogeneous supercomputers. We gave an

overview of a new halo exchange library we designed that implements an efficient

and flexible way to move halo data across large heterogeneous machines using MPI

either alone or in combination with OpenCL, HIP, and CUDA. A paper on this work

has been published in the December 2022 issue of the journal Parallel Computing,

https://doi.org/10.1016/j.parco.2022.102973.

2. Smoothers for the Stokes equations. In this chapter we explored different relax-

ation schemes that are used within a multigrid preconditioner for the GMRES iterative

solver for solving the Stokes equations. Taking advantage of a highly structured dis-

cretization, we performed an exhaustive performance analysis of two popular relaxation

schemes Braess-Sarazin and Vanka, and compared their performance with an emphasis

on the GPU to each other and also to Schur-Uzawa and a Block-Triangular precon-

ditioner. We learned that Vanka is performing better than Braess-Sarazin for this

setup on the GPU while on the CPU Braess-Sarazin has the clear advantage. Both

the Block-Triangular preconditioner and Multigrid paired with Schur-Uzawa are not

able to achieve comparable performance on either the CPU or the GPU. A paper on

this work has been accepted for publication in May 2024 in the International Journal

of High Performance Computing Applications.

3. RAS+ILU for the Reynolds-Averaged Navier-Stokes equations. In the third

chapter we presented the RANS equations and showed how they are derived. After

detailing the particulars of our sample application - modeling the wind flow around a

turbine located in an open field - we presented some common strategies for modeling the

Reynolds-stress tensor. Presenting a range of preconditioners that are used for solving

the RANS equations, we illustrated how they struggle for this model problem and

break down rather quickly. We then presented the RAS/ILU algorithm and designed a

solver that takes advantage of this algorithm and showed how we are able to push this

solver to much higher Reynolds number than what we were able to do before, including

the use of homotopy or continuation methods. We also performed a detailed analysis

including a performance model for this algorithm, and showed that the performance of

92

https://doi.org/10.1016/j.parco.2022.102973

the implementation is not far off from the predicted performance. Lastly we proposed

a dynamic solver that is capable of self-tuning its homotopy parameters. This work is

being prepared for publication at the moment.

93

REFERENCES

[1] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,” journal of
Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202 – 3216, 2014, domain-
Specific Languages and High-Level Frameworks for High-Performance Computing.
https://doi.org/10.1016/j.jpdc.2014.07.003

[2] S. R. Slattery, P. P. H. Wilson, and R. P. Pawlowski, The Data Transfer Kit: A
geometric rendezvous-based tool for multiphysics data transfer. American Nuclear
Society - ANS, 7 2013. https://www.osti.gov/biblio/22212795

[3] M. Bianco, “An Interface for Halo Exchange Pattern,” 2013. https://doi.org/10.5281/
zenodo.831983

[4] “Generic Communication Layer,” 2020, accessed: 2020-04-27. https://github.com/
eth-cscs/gcl

[5] “RAJA performance portability layer (C++),” 2020, accessed: 2021-05-29.
https://github.com/LLNL/RAJA

[6] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J. Kunen,
O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland, “RAJA: Portable
performance for large-scale scientific applications,” in 2019 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2019.
https://doi.org/10.1109/P3HPC49587.2019.00012 pp. 71–81.

[7] C. Pearson, K. Wu, I.-H. Chung, J. Xiong, and W.-M. Hwu, “TEMPI: An interposed
MPI library with a canonical representation of CUDA-aware datatypes,” 2021.
https://doi.org/10.1145/3431379.3460645

[8] C. G. Baker and M. A. Heroux, “Tpetra, and the use of generic programming
in scientific computing,” Sci. Program., vol. 20, no. 2, pp. 115–128, Apr. 2012.
https://doi.org/10.1155/2012/693861

[9] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda et al.,
“An overview of the Trilinos project,” ACM Transactions on Mathematical Software,
vol. 31, no. 3, pp. 397–423, September 2005. https://doi.org/10.1145/1089014.1089021

[10] “MiniGhost halo exchange mini-application,” 2020, accessed: 2020-04-27. https:
//github.com/Mantevo/miniGhost

[11] R. Barrett, M. Heroux, and C. Vaughan, “MiniGhost : a miniapp for exploring
boundary exchange strategies using stencil computations in scientific parallel
computing,” 01 2012. https://doi.org/10.2172/1039405

94

https://doi.org/10.1016/j.jpdc.2014.07.003
https://www.osti.gov/biblio/22212795
https://doi.org/10.5281/zenodo.831983
https://doi.org/10.5281/zenodo.831983
https://github.com/eth-cscs/gcl
https://github.com/eth-cscs/gcl
https://github.com/LLNL/RAJA
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1145/3431379.3460645
https://doi.org/10.1155/2012/693861
https://doi.org/10.1145/1089014.1089021
https://github.com/Mantevo/miniGhost
https://github.com/Mantevo/miniGhost
https://doi.org/10.2172/1039405

[12] “Mantevo Project,” 2020, accessed: 2020-04-27. https://mantevo.github.io

[13] M. P. I. Forum, “MPI: A message-passing interface standard,” 2015, version 3.0.
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

[14] “CUDA C++ programming guide.” https://docs.nvidia.com/cuda/

[15] “HIP documentation.” https://rocm.docs.amd.com/projects/HIP/en/latest/index.
html

[16] Khronos OpenCL Working Group, “The OpenCL specification,” 2018, version 1.2.
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf

[17] W. Gropp, L. N. Olson, and P. Samfass, “Modeling MPI communication performance
on SMP nodes: Is it time to retire the ping pong test,” in Proceedings of the
23rd European MPI Users’ Group Meeting, ser. EuroMPI 2016. Association for
Computing Machinery, 2016. https://doi.org/10.1145/2966884.2966919 pp. 41–50.

[18] “High performance computing conjugate gradients (HPCCG),” 2021, accessed:
2021-01-08. https://github.com/Mantevo/HPCCG

[19] M. Project, “miniFE finite element mini-application,” 2022, accessed: 2022-02-22.
https://github.com/Mantevo/miniFE

[20] D. Moulton, L. N. Olson, and A. Reisner, “Cedar framework,” 2017, version 0.1.
https://github.com/cedar-framework/cedar

[21] A. Malevsky, “Message-passing tools for structured grid communications user’s guide
version 2.0,” centre de Recherche en Calcul Appliqué, 5160 boul. Décarie, bureau 400,
Montréal, Québec.

[22] A. R. Reisner, J. D. Moulton, M. Berndt, and L. N. Olson, “Scalable line and plane
relaxation in a parallel structured multigrid solver,” Parallel Computing, vol. 100, 10
2020. https://doi.org/10.1016/j.parco.2020.102705

[23] A. Reisner, L. N. Olson, and J. D. Moulton, “Scaling structured multigrid to 500k+
cores through coarse-grid redistribution,” SIAM Journal on Scientific Computing,
vol. 40, no. 4, pp. C581–C604, 2018. https://doi.org/10.1137/17M1146440

[24] Y. Dou and Z.-Z. Liang, “A class of block alternating splitting implicit iteration
methods for double saddle point linear systems,” Numerical Linear Algebra with
Applications, vol. 30, no. 1, p. e2455, 2023. https://doi.org/10.1002/nla.2455

[25] F. Nataf and P.-H. Tournier, “Recent advances in domain decomposition methods for
large-scale saddle point problems,” Comptes Rendus. Mécanique, 2022, online first.
https://doi.org/10.5802/crmeca.130

95

https://mantevo.github.io
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://docs.nvidia.com/cuda/
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://doi.org/10.1145/2966884.2966919
https://github.com/Mantevo/HPCCG
https://github.com/Mantevo/miniFE
https://github.com/cedar-framework/cedar
https://doi.org/10.1016/j.parco.2020.102705
https://doi.org/10.1137/17M1146440
https://doi.org/10.1002/nla.2455
https://doi.org/10.5802/crmeca.130

[26] S. V. Ershkov, E. Y. Prosviryakov, N. V. Burmasheva, and V. Christianto, “Towards
understanding the algorithms for solving the Navier-Stokes equations,” Fluid Dynamics
Research, vol. 53, no. 4, p. 044501, 07 2021. https://doi.org/10.1088/1873-7005/ac10f0

[27] H. Elman, D. Silvester, and A. Wathen, Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics, ser. Numerical
Mathematics and Scientific Computation. New York: Oxford University Press, 2005.
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001

[28] M. Benzi, G. Golub, and J. Liesen, “Numerical solution of saddle point problems,”
Acta Numer., vol. 14, pp. 1–137, 2005. https://doi.org/10.1017/s0962492904000212

[29] Y. Notay, “Convergence of some iterative methods for symmetric saddle point linear
systems,” SIAM Journal on Matrix Analysis and Applications, vol. 40, no. 1, pp.
122–146, 2019. https://doi.org/10.1137/18M1208836

[30] A. Brandt and N. Dinar, “Multigrid solutions to elliptic flow problems,” in Numerical
Methods for Partial Differential Equations, S. V. PARTER, Ed. Academic Press,
1979, pp. 53–147. https://doi.org/10.1016/B978-0-12-546050-7.50008-3

[31] A. Voronin, Y. He, S. MacLachlan, L. N. Olson, and R. Tuminaro, “Low-order
preconditioning of the Stokes equations,” Numerical Linear Algebra with Applications,
vol. 29, no. 3, p. e2426, 2022. https://doi.org/10.1002/nla.2426

[32] D. Braess and R. Sarazin, “An efficient smoother for the Stokes problem,” Appl.
Numer. Math., vol. 23, no. 1, pp. 3–19, 1997, multilevel methods (Oberwolfach, 1995).
http://doi.org/10.1016/S0168-9274(96)00059-1

[33] W. Zulehner, “A class of smoothers for saddle point problems,” Computing, vol. 65,
no. 3, pp. 227–246, 2000. https://doi.org/10.1007/s006070070008

[34] S. R. Franco, C. Rodrigo, F. J. Gaspar, and M. A. V. Pinto, “A multigrid waveform
relaxation method for solving the poroelasticity equations,” Computational and Applied
Mathematics, vol. 37, pp. 4805–4820, 2018. https://doi.org/10.1007/s40314-018-0603-9

[35] J. F. Maitre, F. Musy, and P. Nignon, “A fast solver for the Stokes equations using
multigrid with a UZAWA smoother,” in Advances in Multi–Grid Methods, ser. Notes
on Numerical Fluid Mechanics, D. Braess, W. Hackbusch, and U. Trottenberg, Eds.,
vol. 11. Braunschweig: Vieweg, 1984. https://doi.org/10.1007/978-3-663-14245-4 8
pp. 77–83.

[36] J. H. Adler, T. R. Benson, E. C. Cyr, S. P. MacLachlan, and R. S. Tuminaro,
“Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics,”
SIAM J. Sci. Comput., vol. 38, no. 1, pp. B1–B24, 2016. http://doi.org/10.1137/
151006135

[37] P. E. Farrell, Y. He, and S. P. MacLachlan, “A local Fourier analysis of additive Vanka
relaxation for the Stokes equations,” Numerical Linear Algebra with Applications,
vol. 28, no. 3, p. e2306, 2021. https://doi.org/10.1002/nla.2306

96

https://doi.org/10.1088/1873-7005/ac10f0
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1017/s0962492904000212
https://doi.org/10.1137/18M1208836
https://doi.org/10.1016/B978-0-12-546050-7.50008-3
https://doi.org/10.1002/nla.2426
http://doi.org/10.1016/S0168-9274(96)00059-1
https://doi.org/10.1007/s006070070008
https://doi.org/10.1007/s40314-018-0603-9
https://doi.org/10.1007/978-3-663-14245-4_8
http://doi.org/10.1137/151006135
http://doi.org/10.1137/151006135
https://doi.org/10.1002/nla.2306

[38] J. Adler, Y. He, X. Hu, S. MacLachlan, and P. Ohm, “Monolithic multigrid for a
reduced-quadrature discretization of poroelasticity,” SIAM J. Sci. Comput., vol. 45,
no. 3, pp. S54–S81, 2023. https://doi.org/10.1137/21m1429072

[39] V. John and L. Tobiska, “Numerical performance of smoothers in coupled
multigrid methods for the parallel solution of the incompressible Navier-Stokes
equations,” International Journal For Numerical Methods In Fluids, vol. 33, no. 4,
pp. 453–473, Jan 2000. https://doi.org/10.1002/1097-0363(20000630)33:4%3C453::
aid-fld15%3E3.0.co;2-0

[40] M. Paisley and N. Bhatti, “Comparison of multigrid methods for neutral and stably
stratified flows over two-dimensional obstacles,” J. Comput. Phys., vol. 142, no. 2, pp.
581–610, 1998. https://doi.org/10.1006/jcph.1998.5915

[41] M. Larin and A. Reusken, “A comparative study of efficient iterative solvers for
generalized Stokes equations,” Numer. Linear Algebra Appl., vol. 15, no. 1, pp. 13–34,
2008. http://doi.org/10.1002/nla.561

[42] J. H. Adler, T. R. Benson, and S. P. MacLachlan, “Preconditioning a
mass-conserving discontinuous Galerkin discretization of the Stokes equations,”
Numerical Linear Algebra with Applications, vol. 24, no. 3, p. e2047, 2017.
https://doi.org/10.1002/nla.2047

[43] C. Greif and Y. He, “A closed-form multigrid smoothing factor for an additive
Vanka-type smoother applied to the Poisson equation,” Numerical Linear Algebra
with Applications, vol. 30, no. 5, p. e2500, 2023. https://doi.org/10.1002/nla.2500

[44] P. Munch and M. Kronbichler, “Cache-optimized and low-overhead implementations
of additive Schwarz methods for high-order FEM multigrid computations,”
The International Journal of High Performance Computing Applications, p.
10943420231217221, 2023. https://doi.org/10.1177/10943420231217221

[45] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder,
“Reducing parallel communication in algebraic multigrid through sparsification,”
SIAM Journal on Scientific Computing, vol. 38, no. 5, pp. S332–S357, 2016.
https://doi.org/10.1137/15m1026341

[46] A. Bienz, W. D. Gropp, and L. N. Olson, “Reducing communication in algebraic
multigrid with multi-step node aware communication,” The International Journal
of High Performance Computing Applications, vol. 34, no. 5, pp. 547–561, 2020.
https://doi.org/10.1177/1094342020925535

[47] J. Dendy, “Black box multigrid,” Journal of Computational Physics, vol. 48, no. 3,
pp. 366–386, 1982. https://doi.org/10.1016/0021-9991(82)90057-2

[48] A. Reisner, M. Berndt, J. D. Moulton, and L. N. Olson, “Scalable line and plane
relaxation in a parallel structured multigrid solver,” Parallel Computing, vol. 100, p.
102705, 2020. https://doi.org/10.1016/j.parco.2020.102705

97

https://doi.org/10.1137/21m1429072
https://doi.org/10.1002/1097-0363(20000630)33:4%3C453::aid-fld15%3E3.0.co;2-0
https://doi.org/10.1002/1097-0363(20000630)33:4%3C453::aid-fld15%3E3.0.co;2-0
https://doi.org/10.1006/jcph.1998.5915
http://doi.org/10.1002/nla.561
https://doi.org/10.1002/nla.2047
https://doi.org/10.1002/nla.2500
https://doi.org/10.1177/10943420231217221
https://doi.org/10.1137/15m1026341
https://doi.org/10.1177/1094342020925535
https://doi.org/10.1016/0021-9991(82)90057-2
https://doi.org/10.1016/j.parco.2020.102705

[49] M. ur Rehman, T. Geenen, C. Vuik, G. Segal, and S. P. MacLachlan, “On
iterative methods for the incompressible Stokes problem,” International journal
for Numerical Methods in Fluids, vol. 65, no. 10, pp. 1180–1200, 2011.
https://doi.org/10.1002/fld.2235

[50] B. Ayuso de Dios, F. Brezzi, L. D. Marini, J. Xu, and L. Zikatanov, “A simple
preconditioner for a discontinuous Galerkin method for the Stokes problem,” J. Sci.
Comput., vol. 58, no. 3, pp. 517–547, 2014. http://doi.org/10.1007/s10915-013-9758-0

[51] J. R. Rice and R. F. Boisvert, “Solving elliptic problems using ELLPACK,”
Mathematics and Computers in Simulation, vol. 28, no. 4, pp. 339–340, 1986.
https://doi.org/10.1016/0378-4754(86)90066-2

[52] H. Anzt, S. Tomov, and J. J. Dongarra, “Implementing a sparse matrix
vector product for the SELL-C/SELL-C-σ formats on NVIDIA GPUs,” 2014.
https://api.semanticscholar.org/CorpusID:61878276

[53] W. L. Briggs, V. E. Henson, and S. F. McCormick, AMultigrid Tutorial. Philadelphia:
SIAM Books, 2000, second edition. https://doi.org/10.1137/1.9780898719505

[54] U. Trottenberg, C. W. Oosterlee, and A. Schüller,Multigrid. London: Academic Press,
2001. https://shop.elsevier.com/books/multigrid/trottenberg/978-0-08-047956-9

[55] Y. He and S. MacLachlan, “Two-level Fourier analysis of multigrid for higher-order
finite-element discretizations of the Laplacian,” Numerical Linear Algebra with
Applications, vol. 27, no. 3, p. e2285, 2020. https://doi.org/10.1002/nla.2285

[56] Y. He and S. MacLachlan, “Local Fourier analysis for mixed finite-element methods
for the Stokes equations,” Journal of Computational and Applied Mathematics, vol.
357, pp. 161–183, 2019. https://doi.org/10.1016/j.cam.2019.01.029

[57] V. John and L. Tobiska, “A coupled multigrid method for nonconforming finite
element discretizations of the 2d-Stokes equation,” Computing, vol. 64, no. 4, pp.
307–321, 2000, international GAMM-Workshop on Multigrid Methods (Bonn, 1998).
http://doi.org/10.1007/s006070070027

[58] M. Larin and A. Reusken, “A comparative study of efficient iterative solvers for
generalized Stokes equations,” Numer. Linear Algebra Appl., vol. 15, no. 1, pp. 13–34,
2008. http://doi.org/10.1002/nla.561

[59] G. Alfonsi, “Reynolds-averaged Navier-Stokes equations for turbulence modeling,”
Applied Mechanics Reviews - APPL MECH REV, vol. 62, 07 2009. https:
//doi.org/10.1115/1.3124648

[60] H. Tennekes and J. L. Lumley, A First Course in Turbulence. The MIT Press, 03
1972. https://doi.org/10.7551/mitpress/3014.001.0001

[61] D. C. Wilcox et al., Turbulence Modeling for CFD. DCW industries La Canada, CA,
1998, vol. 2.

98

https://doi.org/10.1002/fld.2235
http://doi.org/10.1007/s10915-013-9758-0
https://doi.org/10.1016/0378-4754(86)90066-2
https://api.semanticscholar.org/CorpusID:61878276
https://doi.org/10.1137/1.9780898719505
https://shop.elsevier.com/books/multigrid/trottenberg/978-0-08-047956-9
https://doi.org/10.1002/nla.2285
https://doi.org/10.1016/j.cam.2019.01.029
http://doi.org/10.1007/s006070070027
http://doi.org/10.1002/nla.561
https://doi.org/10.1115/1.3124648
https://doi.org/10.1115/1.3124648
https://doi.org/10.7551/mitpress/3014.001.0001

[62] H. Alcin, B. Koobus, O. Allain, and A. Dervieux, “Efficiency and scalability of a
two-level Schwarz algorithm for incompressible and compressible flows,” International
Journal for Numerical Methods in Fluids, vol. 72, no. 1, pp. 69–89, 2013.
https://doi.org/10.1002/fld.3733

[63] Álvaro Pé de la Riva, C. Rodrigo, F. J. Gaspar, J. H. Adler, X. Hu,
and L. Zikatanov, “A local Fourier analysis for additive Schwarz smoothers,”
Computers & Mathematics with Applications, vol. 158, pp. 13–20, 2024.
https://doi.org/10.1016/j.camwa.2023.12.039

[64] R. N. King, K. Dykes, P. Graf, and P. E. Hamlington, “Optimization of wind plant
layouts using an adjoint approach,” Wind Energy Science, vol. 2, no. 1, pp. 115–131,
2017. https://doi.org/10.5194/wes-2-115-2017

[65] M. Wasserman, Y. Mor-Yossef, I. Yavneh, and J. B. Greenberg, “Robust
multigrid solution of RANS equations with two-equation turbulence models,” 2010.
https://api.semanticscholar.org/CorpusID:14511099

[66] S. Baars, M. van der Klok, J. Thies, and F. W. Wubs, “A staggered-grid multilevel
incomplete LU for steady incompressible flows,” International journal for Numerical
Methods in Fluids, vol. 93, no. 4, pp. 909–926, 2021. https://doi.org/10.1002/fld.4913

[67] P. E. Farrell, L. Mitchell, and F. Wechsung, “An augmented Lagrangian
preconditioner for the 3d stationary incompressible Navier-Stokes equations at high
Reynolds number,” SIAM journal on Scientific Computing, vol. 41, no. 5, pp.
A3073–A3096, 2019. https://doi.org/10.1137/18m1219370

[68] P. F. Fischer and A. G. Tomboulides, “Chapter 3 - spectral element methods
for turbulence,” in Numerical Methods in Turbulence Simulation, ser. Numerical
Methods in Turbulence, R. D. Moser, Ed. Academic Press, 2023, pp. 95–137.
https://doi.org/10.1016/B978-0-32-391144-3.00009-7

[69] C. M. Klaij and C. Vuik, “SIMPLE-type preconditioners for cell-centered, colocated
finite volume discretization of incompressible Reynolds-averaged Navier-Stokes
equations,” International journal for Numerical Methods in Fluids, vol. 71, no. 7, pp.
830–849, 2013. https://doi.org/10.1002/fld.3686

[70] Segal, Rehman, and Vuik, “Preconditioners for incompressible Navier-Stokes solvers,”
Numerical Mathematics: Theory, Methods and Applications, vol. 3, pp. 245–275, 2010.
https://doi.org/10.4208/nmtma.2010.33.1

[71] Q. Chen, X. Jiao, and O. Yang, “Robust and efficient multilevel-ILU preconditioning
of hybrid Newton-GMRES for incompressible Navier-Stokes equations,” International
journal for Numerical Methods in Fluids, vol. 93, no. 12, pp. 3405–3423, Aug. 2021.
https://doi.org/10.1002/fld.5039

99

https://doi.org/10.1002/fld.3733
https://doi.org/10.1016/j.camwa.2023.12.039
https://doi.org/10.5194/wes-2-115-2017
https://api.semanticscholar.org/CorpusID:14511099
https://doi.org/10.1002/fld.4913
https://doi.org/10.1137/18m1219370
https://doi.org/10.1016/B978-0-32-391144-3.00009-7
https://doi.org/10.1002/fld.3686
https://doi.org/10.4208/nmtma.2010.33.1
https://doi.org/10.1002/fld.5039

[72] Q. Chen, A. Ghai, and X. Jiao, “HILUCSI: Simple, robust, and fast multilevel ILU
for large-scale saddle-point problems from PDEs,” Numerical Linear Algebra with
Applications, vol. 28, no. 6, p. e2400, 2021. https://doi.org/10.1002/nla.2400

[73] D. Kay, D. Loghin, and A. Wathen, “A preconditioner for the steady-state
Navier-Stokes equations,” SIAM journal on Scientific Computing, vol. 24, no. 1, pp.
237–256, 2002. https://doi.org/10.1137/S106482759935808X

[74] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, “Block
preconditioners based on approximate commutators,” SIAM journal on Scientific
Computing, vol. 27, no. 5, pp. 1651–1668, 2006. https://doi.org/10.1137/040608817

[75] M. Benzi and M. A. Olshanskii, “An augmented Lagrangian-based approach to the
Oseen problem,” SIAM journal on Scientific Computing, vol. 28, no. 6, pp. 2095–2113,
2006. https://doi.org/10.1137/050646421

[76] S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass
and momentum transfer in three-dimensional parabolic flows,” International
journal of Heat and Mass Transfer, vol. 15, pp. 1787–1806, 1972. https:
//doi.org/10.1016/0017-9310(72)90054-3

[77] D. A. Knoll and W. J. Rider, “A multigrid preconditioned Newton-Krylov method,”
SIAM journal on Scientific Computing, vol. 21, no. 2, pp. 691–710, 1999.
https://doi.org/10.1137/S1064827598332709

[78] E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, “Stabilization and scalable block
preconditioning for the Navier-Stokes equations,” Journal of Computational Physics,
vol. 231, no. 2, pp. 345–363, 2012. https://doi.org/10.1016/j.jcp.2011.09.001

[79] S. Patankar, Numerical Heat Transfer and Fluid Flow. CRC Press, 1980.
https://doi.org/10.1201/9781482234213

[80] S. Hamilton, M. Benzi, and E. Haber, “New multigrid smoothers for the Oseen
problem,” Numerical Linear Algebra with Applications, vol. 17, no. 2-3, pp. 557–576,
2010. https://doi.org/10.1002/nla.707

[81] M. Benzi, M. A. Olshanskii, and Z. Wang, “Modified augmented Lagrangian
preconditioners for the incompressible Navier-Stokes equations,” International
journal for Numerical Methods in Fluids, vol. 66, no. 4, pp. 486–508, 2011.
https://doi.org/10.1002/fld.2267

[82] X. He, C. Vuik, and C. M. Klaij, “Combining the augmented Lagrangian
preconditioner with the simple Schur complement approximation,” SIAM journal
on Scientific Computing, vol. 40, no. 3, pp. A1362–A1385, 2018. https:
//doi.org/10.1137/17M1144775

100

https://doi.org/10.1002/nla.2400
https://doi.org/10.1137/S106482759935808X
https://doi.org/10.1137/040608817
https://doi.org/10.1137/050646421
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1137/S1064827598332709
https://doi.org/10.1016/j.jcp.2011.09.001
https://doi.org/10.1201/9781482234213
https://doi.org/10.1002/nla.707
https://doi.org/10.1002/fld.2267
https://doi.org/10.1137/17M1144775
https://doi.org/10.1137/17M1144775

[83] M. Benzi, H. Choi, and D. B. Szyld, “Threshold ordering for preconditioning
nonsymmetric problems,” in Scientific Computing, Proceedings of the Workshop,
10–12 March 1997, Hong Kong, G. Golub, S.-H. Lui, F. Luk, and R. Plemmons,
Eds. Singapore: Springer, 1997. https://www.researchgate.net/publication/2669955
Threshold Ordering for Preconditioning Nonsymmetric Problems pp. 159–165.

[84] O. Dahl and S. O. Wille, “An ILU preconditioner with coupled node fill-in for iterative
solution of the mixed finite element formulation of the 2d and 3d Navier-Stokes
equations,” International journal for Numerical Methods in Fluids, vol. 15, no. 5, pp.
525–544, 09 1992. https://doi.org/10.1002/fld.1650150503

[85] S. O. Wille and A. F. D. Loula, “A priori pivoting in solving the Navier-Stokes
equations,” Communications in Numerical Methods in Engineering, vol. 18, pp.
691–698, 2002. https://doi.org/10.1002/cnm.528

[86] S. O. Wille, Ø. Staff, and A. F. D. Loula, “Efficient a priori pivoting schemes for a
sparse direct Gaussian equation solver for the mixed finite element formulation of
the Navier-Stokes equations,” Applied Mathematical Modelling, vol. 28, pp. 607–616,
2004. https://doi.org/10.1016/j.apm.2003.11.001

[87] S. W. Sloan, “An algorithm for profile and wavefront reduction of sparse matrices,”
International journal for Numerical Methods in Engineering, vol. 23, no. 2, pp.
239–251, 1986. https://doi.org/10.1002/nme.1620230208

[88] J. H. Adler, T. R. Benson, and S. P. MacLachlan, “Preconditioning a mass-conserving
discontinuous Galerkin discretization of the Stokes equations,” Numerical Linear
Algebra with Applications, vol. 24, 2017. https://doi.org/10.1002/nla.2047

[89] P. E. Farrell, Y. He, and S. P. MacLachlan, “A local Fourier analysis of additive Vanka
relaxation for the Stokes equations,” Numerical Linear Algebra with Applications,
vol. 28, no. 3, p. e2306, 2021. https://doi.org/10.1002/nla.2306

[90] P. E. Farrell, M. G. Knepley, F. Wechsung, and L. Mitchell, “PCPATCH: software
for the topological construction of multigrid relaxation methods,” ACM Trans. Math.
Softw., vol. 47, pp. 25:1–25:22, 2019. https://doi.org/10.1145/3445791

[91] X.-C. Cai and M. Sarkis, “A Restricted additive Schwarz preconditioner for general
sparse linear systems,” SIAM Journal on Scientific Computing, vol. 21, no. 2, pp.
792–797, 1999. https://doi.org/10.1137/S106482759732678X

[92] Z. Li and Y. Saad, “SchurRAS: A restricted version of the overlapping Schur
complement preconditioner,” SIAM Journal on Scientific Computing, vol. 27, no. 5,
pp. 1787–1801, 2006. https://doi.org/10.1137/040608350

[93] H. Liu, Z. Chen, S. Yu, B. Hsieh, and L. Shao, “Development of a Restricted
additive Schwarz preconditioner for sparse linear systems on NVIDIA GPU,” 2014.
https://api.semanticscholar.org/CorpusID:59388878

101

https://www.researchgate.net/publication/2669955_Threshold_Ordering_for_Preconditioning_Nonsymmetric_Problems
https://www.researchgate.net/publication/2669955_Threshold_Ordering_for_Preconditioning_Nonsymmetric_Problems
https://doi.org/10.1002/fld.1650150503
https://doi.org/10.1002/cnm.528
https://doi.org/10.1016/j.apm.2003.11.001
https://doi.org/10.1002/nme.1620230208
https://doi.org/10.1002/nla.2047
https://doi.org/10.1002/nla.2306
https://doi.org/10.1145/3445791
https://doi.org/10.1137/S106482759732678X
https://doi.org/10.1137/040608350
https://api.semanticscholar.org/CorpusID:59388878

[94] B. Yang, H. Liu, Z. Chen, and X. Tian, “GPU-accelerated preconditioned GMRES
solver,” in 2016 IEEE 2nd International Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE International Conference on High Performance and Smart
Computing (HPSC), and IEEE International Conference on Intelligent Data and
Security (IDS), 2016. https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.28
pp. 280–285.

[95] S. Saberi, G. Meschke, and A. Vogel, “A restricted additive Vanka smoother for
geometric multigrid,” Journal of Computational Physics, vol. 459, p. 111123, 2022.
https://doi.org/10.1016/j.jcp.2022.111123

[96] R. Ram, D. Grünewald, and N. R. Gauger, “Scalable hybrid parallel ILU
preconditioner to solve sparse linear systems,” in Euro-Par 2021: Parallel Processing
Workshops, R. Chaves, D. B. Heras, A. Ilic, D. Unat, R. M. Badia, A. Bracciali,
P. Diehl, A. Dubey, O. Sangyoon, S. L. Scott, and L. Ricci, Eds. Cham: Springer
International Publishing, 2022. https://doi.org/10.1007/978-3-031-06156-1 46 pp.
540–544.

[97] R. D. Falgout and U. M. Yang, “hypre: A library of high performance
preconditioners,” in Computational Science — ICCS 2002, P. M. A. Sloot, A. G.
Hoekstra, C. J. K. Tan, and J. J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002. https://doi.org/10.1007/3-540-47789-6 66 pp. 632–641.

[98] “hypre: High performance preconditioners,” https://llnl.gov/casc/hypre, https://
github.com/hypre-space/hypre.

[99] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,
E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D.
Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley,
F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell,
T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini,
H. Zhang, H. Zhang, and J. Zhang, “PETSc web page,” https://petsc.org/, 2023.
https://petsc.org/

[100] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,
E. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp,
V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong,
S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E.
Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang,
and J. Zhang, “PETSc/TAO users manual,” Argonne National Laboratory, Tech. Rep.
ANL-21/39 - Revision 3.19, 2023.

[101] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management
of parallelism in object oriented numerical software libraries,” in Modern Software
Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds.
Birkhäuser Press, 1997. https://doi.org/10.1007/978-1-4612-1986-6 8 pp. 163–202.

102

https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.28
https://doi.org/10.1016/j.jcp.2022.111123
https://doi.org/10.1007/978-3-031-06156-1_46
https://doi.org/10.1007/3-540-47789-6_66
https://llnl.gov/casc/hypre
https://github.com/hypre-space/hypre
https://github.com/hypre-space/hypre
https://petsc.org/
https://petsc.org/
https://doi.org/10.1007/978-1-4612-1986-6_8

[102] D. A. Ham, P. H. J. Kelly, L. Mitchell, C. J. Cotter, R. C. Kirby, K. Sagiyama,
N. Bouziani, S. Vorderwuelbecke, T. J. Gregory, J. Betteridge, D. R. Shapero, R. W.
Nixon-Hill, C. J. Ward, P. E. Farrell, P. D. Brubeck, I. Marsden, T. H. Gibson,
M. Homolya, T. Sun, A. T. T. McRae, F. Luporini, A. Gregory, M. Lange, S. W.
Funke, F. Rathgeber, G.-T. Bercea, and G. R. Markall, Firedrake User Manual,
1st ed., Imperial College London and University of Oxford and Baylor University and
University of Washington, 5 2023. https://doi.org/10.25561/104839

[103] “The Firedrake project,” https://www.firedrakeproject.org, accessed: 2024-01-16.

[104] M. D. Gunzburger and J. S. Peterson, “On conforming finite element methods for the
inhomogeneous stationary Navier-Stokes equations,” Numer. Math., vol. 42, no. 2,
pp. 173–194, jun 1983. https://doi.org/10.1007/BF01395310

[105] “Pull request implementing interface to hypre’s ILU,” https://gitlab.com/petsc/petsc/
-/merge requests/7458, accessed: 2024-05-13.

[106] “Multifrontal massively parallel soarse direct solver (MUMPS),” https:
//mumps-solver.org/, accessed: 2024-02-06.

[107] “Speedscope, an interactive flamegraph visualizer,” https://www.speedscope.app/, ac-
cessed: 2024-05-30.

[108] “DELTA supercomputer homepage,” https://delta.ncsa.illinois.edu/, accessed: 2023-
03-21.

[109] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Evaluating attainable
memory bandwidth of parallel programming models via BabelStream,” Int. J. Comput.
Sci. Eng., vol. 17, pp. 247–262, 2018. https://api.semanticscholar.org/CorpusID:
67046090

[110] H. B. Keller, “Continuation methods in computational fluid dynamics,” in Numerical
and Physical Aspects of Aerodynamic Flows, T. Cebeci, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1982. https://doi.org/10.1007/978-3-662-12610-3 1 pp.
3–13.

[111] M. D. Gunzburger, “8 - solution methods for large Reynolds numbers,” in Finite
Element Methods for Viscous Incompressible Flows, ser. Computer Science and
Scientific Computing, M. D. Gunzburger, Ed. San Diego: Academic Press, 1989, pp.
105–114. https://doi.org/10.1016/B978-0-12-307350-1.50015-6

[112] G. Carey and R. Krishnan, “Continuation techniques for a penalty approximation of
the Navier-Stokes equations,” Computer methods in applied mechanics and engineering,
vol. 48, pp. 265–282, 1985. https://doi.org/10.1016/s0045-7825(85)80002-5

[113] M. D. Gunzburger and J. S. Peterson, “Predictor and steplength selection in
continuation methods for the Navier-Stokes equations,” Computers & Mathematics
with Applications, vol. 22, no. 8, pp. 73–81, 1991. https://doi.org/10.1016/
0898-1221(91)90015-v

103

https://doi.org/10.25561/104839
https://www.firedrakeproject.org
https://doi.org/10.1007/BF01395310
https://gitlab.com/petsc/petsc/-/merge_requests/7458
https://gitlab.com/petsc/petsc/-/merge_requests/7458
https://mumps-solver.org/
https://mumps-solver.org/
https://www.speedscope.app/
https://delta.ncsa.illinois.edu/
https://api.semanticscholar.org/CorpusID:67046090
https://api.semanticscholar.org/CorpusID:67046090
https://doi.org/10.1007/978-3-662-12610-3_1
https://doi.org/10.1016/B978-0-12-307350-1.50015-6
https://doi.org/10.1016/s0045-7825(85)80002-5
https://doi.org/10.1016/0898-1221(91)90015-v
https://doi.org/10.1016/0898-1221(91)90015-v

[114] D. A. Brown and D. W. Zingg, “A monolithic homotopy continuation algorithm with
application to computational fluid dynamics,” Journal of Computational Physics, vol.
321, pp. 55–75, 2016. https://doi.org/10.1016/j.jcp.2016.05.031

[115] J. Malm, P. Schlatter, P. F. Fischer, and D. S. Henningson, “Stabilization
of the spectral element method in convection dominated flows by recovery of
skew-symmetry,” J. Sci. Comput., vol. 57, no. 2, pp. 254–277, nov 2013.
https://doi.org/10.1007/s10915-013-9704-1

[116] R. Swanson and E. Turkel, “Pseudo-time algorithms for the Navier-Stokes equations,”
Applied Numerical Mathematics, vol. 2, no. 3, pp. 321–333, 1986, special Issue in Honor
of Milt Rose’s Sixtieth Birthday. https://doi.org/10.1016/0168-9274(86)90037-1

[117] A. Chorin, “Numerical solution of the Navier-Stokes equations,” Mathematics of
Computation, vol. 22, 10 1968. https://doi.org/10.2307/2004575

[118] R. Temam and A. Chorin, “Navier-Stokes equations: Theory and numerical
analysis,” Journal of Applied Mechanics, vol. 45, no. 2, pp. 456–456, 06 1978.
https://doi.org/10.1115/1.3424338

[119] A. Sharma, S. Ananthan, J. Sitaraman, S. Thomas, and M. A. Sprague,
“Overset meshes for incompressible flows: On preserving accuracy of underlying
discretizations,” Journal of Computational Physics, vol. 428, p. 109987, 2021.
https://doi.org/10.1016/j.jcp.2020.109987

104

https://doi.org/10.1016/j.jcp.2016.05.031
https://doi.org/10.1007/s10915-013-9704-1
https://doi.org/10.1016/0168-9274(86)90037-1
https://doi.org/10.2307/2004575
https://doi.org/10.1115/1.3424338
https://doi.org/10.1016/j.jcp.2020.109987

APPENDIX A: DYNAMIC SOLVER IMPLEMENTATION IN FIREDRAKE

The test code used in chapter 4 to evaluate the proposed solver design is given in two files

below. The solver is controlled by the content of main.py given in appendix A with the

problem set up done in the file problems.py given in appendix A

1 from firedrake import *

2 from petsc4py import PETSc

3 import argparse , sys , os, time , pathlib

4 from problemsetup import *

5 PETSc.Sys.popErrorHandler ()

6

7 # ##

8 # ##

9

10 # parse command line arguments

11

12 parser = argparse.ArgumentParser(description="Solver", formatter_class=argparse.

ArgumentDefaultsHelpFormatter)

13

14 parser.add_argument("-Re", type=int , dest="reynolds", default =10,

15 help="Target Reynolds number")

16 parser.add_argument("-file", type=str , dest="file", default="temp.log",

17 help="File where outout of script is piped to")

18 parser.add_argument("-logfile", type=str , dest="logfile", default="output.log",

19 help="File where to log the progress")

20

21 parser.add_argument("-nx", type=int , dest="nx", default =30,

22 help="dof’s - x direction")

23 parser.add_argument("-ny", type=int , dest="ny", default =30,

24 help="dof’s - y direction")

25 parser.add_argument("-nz", type=int , dest="nz", default =30,

26 help="dof’s - z direction")

27

28 args , unknown = parser.parse_known_args(sys.argv [1:])

29

30 # ##

31 # ##

32

33 # limit the quadrature degree

34 parameters[’form_compiler ’][’quadrature_degree ’] = 6

35

36 # ##

37 # ##

38

39 if not os.path.exists(args.file):

40 PETSc.Sys.Print("The file flag is not set to the current piped output. Please fix

that first")

41 sys.exit (1)

42

Listing A.1: File for controlling solver - main.py.

105

43 # print configuration to screen

44

45 PETSc.Sys.Print("")

46 PETSc.Sys.Print("**")

47 PETSc.Sys.Print("")

48 PETSc.Sys.Print("** CONFIGURATION ** ")

49 PETSc.Sys.Print("")

50 PETSc.Sys.Print(f"Reynold ’s number: {args.reynolds}")

51 PETSc.Sys.Print(f" Mesh: {args.nx}x{args.ny}x{args.nz}")

52 PETSc.Sys.Print(f" # MPI ranks: {COMM_WORLD.Get_size ()}")

53

54 PETSc.Sys.Print("")

55

56

57 logf = open(args.logfile , ’w’)

58 logf.write("\n")

59 logf.write("---\n")

60 logf.write("\n")

61 logf.write(f"** target Reynolds number = {args.reynolds }\n")

62 logf.write(f"** mesh = {args.nx}x{args.ny}x{args.nz}\n")

63 logf.write(f"** # MPI ranks = {COMM_WORLD.Get_size ()}\n")

64 logf.write("\n")

65 logf.write("---\n")

66 logf.write("\n")

67 logf.flush()

68

69 # ##

70 # ##

71

72 par_damp = 1

73 par_Re = min(args.reynolds , 100)

74 par_dR = 150

75 par_tun = 0

76

77 par_tau_step = 1e-4

78 par_tau_final = 1e-5

79 par_tau = par_tau_step if par_Re < args.reynolds else par_tau_final

80

81 _liniter = 10

82 _maxnonliniter = 100

83 _stol = 1e-4

84

85 # ##

86 # ##

87

88 M, Z, w, v, q = CreateRANSProblem(args.nx, args.ny , args.nz)

89

90 PETSc.Sys.Print(f"dim = {Z.dim()}")

91 PETSc.Sys.Print("")

92

93 solutionFound = False

94 while not solutionFound:

Listing A.1 (cont.)

106

95

96 PETSc.Sys.Print("**")

97 PETSc.Sys.Print("")

98 PETSc.Sys.Print(f" >> RUNNING SOLVER: Re = {par_Re}, par_damp = {par_damp}, par_tau

= {par_tau}, current dR = {par_dR}")

99 PETSc.Sys.Print("")

100

101 logf.write("**\n")

102 logf.write(f">> Re = {par_Re}, par_damp = {par_damp}, par_tau = {par_tau}, current

dR = {par_dR }\n")

103 logf.flush()

104

105 F, bcs , nsp = RANS3D(par_Re , Z, M, w, v, q)

106

107 # some information about system

108 appctx = {"Re": par_Re , "velocity_space": 0}

109

110 parameters = {

111

112 # aij allows to extract linearized matrices

113 "mat_type": "aij",

114

115 # some SNES options

116 "snes_monitor": None ,

117 "snes_rtol": par_tau ,

118 "snes_atol": par_tau ,

119 "snes_stol": _stol ,

120 "snes_max_it": _maxnonliniter ,

121 "snes_converged_reason": None ,

122 "snes_view": None ,

123

124 # linearize with damped Newton

125 "snes_type": "newtonls",

126 "snes_linesearch_damping": par_damp ,

127

128 # fGMRES solver around fieldsplit

129 "ksp_type": "fgmres",

130 "ksp_convergence_test": "skip",

131 "ksp_gmres_modifiedgramschmidt": None ,

132 "ksp_monitor_true_residual": None ,

133 "ksp_converged_reason": None ,

134 "ksp_rtol": 1e-10,

135 "ksp_atol": 1e-10,

136 "ksp_max_it": _liniter ,

137

138 # fieldsplit as preconditioner

139 "pc_type": "fieldsplit",

140 "pc_fieldsplit_type": "schur",

141 "pc_fieldsplit_schur_fact_type": "full",

142 # this ensures non -singular Schur - complement

143 "pc_fieldsplit_schur_precondition": "selfp",

144

Listing A.1 (cont.)

107

145 # velocity solve (AMG+RAS/ILU)

146 "fieldsplit_0_ksp_type": "gmres",

147 "fieldsplit_0_ksp_convergence_test": "skip",

148 "fieldsplit_0_ksp_gmres_modifiedgramschmidt": None ,

149 #" fieldsplit_0_ksp_monitor_true_residual ": None ,

150 "fieldsplit_0_ksp_rtol": 1e-2,

151 "fieldsplit_0_ksp_atol": 1e-10,

152 "fieldsplit_0_ksp_max_it": _liniter ,

153 #" fieldsplit_0_ksp_view ": None ,

154

155 "fieldsplit_0_pc_type": "hypre",

156 "fieldsplit_0_pc_hypre_type": "boomeramg",

157 "fieldsplit_0_pc_hypre_boomeramg_tol": 1e-2,

158 #" fieldsplit_0_pc_hypre_boomeramg_print_statistics ": None ,

159 "fieldsplit_0_pc_hypre_boomeramg_ilu_max_nnz_per_row": 100,

160 "fieldsplit_0_pc_hypre_boomeramg_strong_threshold": 0.5,

161 "fieldsplit_0_pc_hypre_boomeramg_truncfactor": 0.3,

162 "fieldsplit_0_pc_hypre_boomeramg_max_iter": 1,

163 "fieldsplit_0_pc_hypre_boomeramg_smooth_type": "ILU",

164 "fieldsplit_0_pc_hypre_boomeramg_ilu_type": "RAS -ILUk",

165 "fieldsplit_0_pc_hypre_boomeramg_ilu_iterative_setup": "async -in-place",

166 "fieldsplit_0_pc_hypre_boomeramg_ilu_level": 0,

167 "fieldsplit_0_pc_hypre_boomeramg_ilu_tri_solve": 0,

168 "fieldsplit_0_pc_hypre_boomeramg_ilu_local_reordering": 0,

169 "fieldsplit_0_pc_hypre_boomeramg_smooth_num_sweeps": 1,

170 "fieldsplit_0_pc_hypre_boomeramg_smooth_num_levels": 25,

171 "fieldsplit_0_pc_hypre_boomeramg_max_levels": 5,

172 "fieldsplit_0_pc_hypre_boomeramg_cycle_type": "v",

173 "fieldsplit_0_pc_hypre_boomeramg_coarsen_type": "PMIS",

174 "fieldsplit_0_pc_hypre_boomeramg_interp_type": "ext+i",

175

176 # Schur - complement solve (AMG+RAS/ILU)

177 "fieldsplit_1_ksp_type": "gmres",

178 "fieldsplit_1_ksp_convergence_test": "skip",

179 "fieldsplit_1_ksp_gmres_modifiedgramschmidt": None ,

180 #" fieldsplit_1_ksp_monitor_true_residual ": None ,

181 "fieldsplit_1_ksp_rtol": 1e-2,

182 "fieldsplit_1_ksp_atol": 1e-10,

183 "fieldsplit_1_ksp_max_it": _liniter ,

184

185 # " fieldsplit_1_ksp_type ": "preonly",

186 "fieldsplit_1_pc_type": "hypre",

187 "fieldsplit_1_pc_hypre_type": "boomeramg",

188 "fieldsplit_1_pc_hypre_boomeramg_tol": 1e-2,

189 #" fieldsplit_1_pc_hypre_boomeramg_print_statistics ": None ,

190 "fieldsplit_1_pc_hypre_boomeramg_ilu_max_nnz_per_row": 100,

191 "fieldsplit_1_pc_hypre_boomeramg_strong_threshold": 0.5,

192 "fieldsplit_1_pc_hypre_boomeramg_truncfactor": 0.3,

193 "fieldsplit_1_pc_hypre_boomeramg_max_iter": 1,

194 "fieldsplit_1_pc_hypre_boomeramg_smooth_type": "ILU",

195 "fieldsplit_1_pc_hypre_boomeramg_ilu_type": "RAS -ILUk",

196 "fieldsplit_1_pc_hypre_boomeramg_ilu_iterative_setup": "async -in-place",

Listing A.1 (cont.)

108

197 "fieldsplit_1_pc_hypre_boomeramg_ilu_level": 0,

198 "fieldsplit_1_pc_hypre_boomeramg_ilu_tri_solve": 0,

199 "fieldsplit_1_pc_hypre_boomeramg_ilu_local_reordering": 0,

200 "fieldsplit_1_pc_hypre_boomeramg_smooth_num_sweeps": 1,

201 "fieldsplit_1_pc_hypre_boomeramg_smooth_num_levels": 25,

202 "fieldsplit_1_pc_hypre_boomeramg_max_levels": 5,

203 "fieldsplit_1_pc_hypre_boomeramg_cycle_type": "v",

204 "fieldsplit_1_pc_hypre_boomeramg_coarsen_type": "PMIS",

205 "fieldsplit_1_pc_hypre_boomeramg_interp_type": "ext+i",

206

207 }

208

209 #w_new = w.copy ()

210

211 # set up nonlinear variational problem and solver

212 # nvproblem = NonlinearVariationalProblem (F, w_new , bcs=bcs)

213 nvproblem = NonlinearVariationalProblem(F, w, bcs=bcs)

214 solver = NonlinearVariationalSolver(nvproblem , solver_parameters=parameters ,

nullspace=nsp , appctx=appctx)

215

216 t1 = time.time_ns ()

217

218 solver.solve()

219

220 t2 = time.time_ns ()

221

222 PETSc.Sys.Print("")

223 PETSc.Sys.Print("**")

224 PETSc.Sys.Print("")

225 PETSc.Sys.Print(f" >> SOLVE TIME: {(t2-t1)//1e6} ms")

226 PETSc.Sys.Print("")

227 PETSc.Sys.Print("**")

228 PETSc.Sys.Print("")

229

230 f = open(args.file , "r")

231 txt = f.read()

232

233 lines = txt.split(" 0 SNES Function norm ")

234 initres = float(lines [-1]. split("\n")[0])

235

236 history = [initres]

237 allparts = lines [-1]. split(" SNES Function norm ")

238 for p in allparts:

239 history.append(float(p.split("\n")[0]))

240

241 finalres = history [-1]

242 itercount = len(history)-1

243 itercount_str = str(itercount)

244

245 logf.write(">> Convergence history :\n")

246 for h in history:

247 logf.write(f">> {h}\n")

Listing A.1 (cont.)

109

248 logf.write(">> End convergence history\n")

249 logf.write(f">> # iterations: {itercount_str }\n\n\n")

250 logf.flush()

251

252 improvement = finalres/initres

253

254 # CONVERGED

255 if improvement <= par_tau or finalres <= par_tau or abs(improvement -1) < 1e-12:

256

257 if par_Re == args.reynolds:

258

259 solutionFound = True

260 logf.write("\n>> SOLUTION FOUND!\n\n")

261 break

262

263 else:

264

265 #w = w_new.copy ()

266 par_damp = 1.0

267 par_tun = 0

268

269 # too few iteration

270 if itercount < 1:

271

272 par_Re -= par_dR

273 par_dR = min(args.reynolds -par_dR , par_dR +50)

274

275 # solid solve

276 else:

277

278 par_dR = 150

279

280 # NOT CONVERGED

281 else:

282

283 # reset Re

284 if par_dR < par_Re:

285 par_Re = par_Re -par_dR

286

287 if par_tun == 0:

288

289 par_dR = max(25, par_dR -50)

290 par_damp = 1

291 par_tun = 1

292

293 elif par_tun == 1:

294

295 par_dR = max(25, par_dR -50)

296 par_damp = 1

297 par_tun = 2

298

299 elif par_tun == 2:

Listing A.1 (cont.)

110

300

301 par_damp = 0.9

302 par_tun = 3

303

304 elif par_tun == 3:

305

306 par_dR = max(25, par_dR -25)

307 par_damp = 1

308 par_tun = 4

309

310 elif par_tun == 4:

311

312 par_damp = 0.9

313 par_tun = 5

314

315 elif par_tun == 5:

316

317 PETSc.Sys.Print(f"NO SOLUTION FOUND")

318 logf.write("\n>> SOLVE FAILED !!\n\n")

319 solutionFound = False

320 break

321

322 par_Re = min(args.reynolds , par_Re + par_dR)

323

324 if par_Re == args.reynolds:

325 par_tau = par_tau_final

326 else:

327 par_tau = par_tau_step

328

329

330 logf.close()

331

332 # ##

333 # ##

334

335 # Output solution

336

337 u, p = w.subfunctions

338 u.rename("Velocity")

339 p.rename("Pressure")

340 File("solution.pvd").write(u, p)

341

Listing A.1 (cont.)

111

1 from firedrake import *

2 from scipy.special import gamma

3 from firedrake.__future__ import interpolate

4

5 def CreateRANSProblem(nx, ny, nz):

6

7 # box mesh

8 # M = BoxMesh(nx , ny , nz , 6, 2, 2, hexahedral =True , reorder=False)

9 M = UnitCubeMesh(nx , ny , nz, hexahedral=True , reorder=False)

10

11 # Q2/Q1 elements

12 Q1 = VectorFunctionSpace(M, "Q", 2)

13 Q2 = FunctionSpace(M, "Q", 1)

14 Z = Q1 * Q2

15

16 # create variables

17 up = Function(Z)

18 v, q = TestFunctions(Z)

19

20 up.assign (0)

21

22 return M, Z, up, v, q

23

24 def RANS3D(Re , Z, M, up , v, q):

25

26 def build_turbine_force(x0, u, rotor_diam =130, yaw=0):

27

28 # x0 [0]: x-location of turbine

29 # x0 [1]: y-location of turbine

30 # x0 [2]: hub height of turbine (distance above ground level)

31 assert isinstance(x0 , list)

32 assert len(x0) == 3

33

34 # Define useful turbine values

35 W = 0.1* rotor_diam # thickness across rotor plane

36 R = 0.5* rotor_diam # rotor radius

37 ma = 0.3 # axial induction factor

38 C_tprime = 4.0*ma/(1.0-ma) # modified thrust coefficient

39

40 x = SpatialCoordinate(M)

41

42 # Set up some dim dependent values

43 S_norm = (2.0+pi)/(2.0* pi)

44 T_norm = 2.0* gamma (7.0/6.0)

45

46 WTGbase = as_vector ((cos(yaw), sin(yaw), 0.0))

47 A = pi*R**2.0

48 D_norm = pi*gamma (4.0/3.0)

49

50 # Rotate and Shift the Turbine

51 xrot = cos(yaw)*(x[0]-x0[0]) + sin(yaw)*(x[1]-x0[1])

52 yrot = -sin(yaw)*(x[0]-x0[0]) + cos(yaw)*(x[1]-x0[1])

Listing A.2: File for creating model problem setup - problemsetup.py

112

53 zrot = x[2]-x0[2]

54 xs = [xrot ,yrot ,zrot]

55

56 # Create the function that represents the Thickness of the turbine

57 T = exp(-pow((xs[0]/W), 6.0))

58

59 # Create the function that represents the Disk of the turbine

60 r = sqrt(xs [1]**2.0+ xs [2]**2.0)/R

61 D = exp(-pow(r, 6.0))

62

63 # Create the function that represents the force

64 force_profile = "sine"

65

66 if force_profile == "constant":

67 force = 1.0

68 elif force_profile == "sine":

69 force = (r*sin(pi*r)+0.5)/S_norm

70 else:

71 raise ValueError(f"Force profile {force_profile} not recognized.")

72

73 F = -0.5*A*C_tprime*force

74

75 # Calculate normalization constant

76 volNormalization = T_norm*D_norm*W*R**2.0

77

78 # compute disk averaged velocity in yawed case and don ’t project

79 actuator_disk = F*T*D*WTGbase/volNormalization

80

81 # Expand the dot product

82 tf1 = actuator_disk * cos(yaw)**2

83 tf2 = actuator_disk * sin(yaw)**2

84 tf3 = actuator_disk * 2.0 * cos(yaw) * sin(yaw)

85

86 # Compose full turbine force

87 tf = tf1*u[0]**2+ tf2*u[1]**2+ tf3*u[0]*u[1]

88

89 return tf

90

91 # create variables

92 u, p = split(up)

93

94 # Calculate the turbine force

95 tf = build_turbine_force ([0.25 , 0.5, 0.5], u, rotor_diam =0.5, yaw=0)

96 turb_force = inner(tf , v)*dx

97

98 F = (

99

100 # Viscosity : nu*grad ^2(u)

101 (1.0 / Re) * inner(grad(u), grad(v)) * dx +

102

103 # Convection : u*grad(u)

104 inner(dot(u, nabla_grad(u)), v) * dx +

Listing A.2 (cont.)

113

105

106 # Pressure: -grad(P)

107 inner(grad(p), v)*dx -

108

109 # Divergence : div(u)

110 inner(div(u), q)*dx -

111

112 # wind turbine

113 turb_force

114)

115

116 x = SpatialCoordinate(M)

117 inflow = assemble(interpolate(as_vector ([1.3* pow(x[2]/2, 0.5), 0.0, 0.0]), Z.sub (0))

)

118 bcs = [DirichletBC(Z.sub (0), inflow , (1,)), # left

119 DirichletBC(Z.sub(0).sub(1), Constant ((0)), (3,)), # front

120 DirichletBC(Z.sub(0).sub(1), Constant ((0)), (4,)), # back

121 DirichletBC(Z.sub(0), Constant ((0,0,0)), (5,)), # bottom

122 DirichletBC(Z.sub(0).sub(2), Constant ((0)), (6,)), # top

123 # DirichletBC (Z.sub (1) , Constant ((0)), (1,2,3,4,5,6))

124]

125

126 # create nullspace on velocity space

127 nullspace = MixedVectorSpaceBasis(Z, [Z.sub(0), VectorSpaceBasis(constant=True , comm

=COMM_WORLD)])

128

129 return (F, bcs , nullspace)

130

Listing A.2 (cont.)

114

	CHAPTER 1 INTRODUCTION
	Data Transfer Across Large Heterogeneous Machines
	Smoothers for Stokes Equations
	RAS+ILU for the Reynolds-Averaged Navier-Stokes Equations

	CHAPTER 2 DATA TRANSFER ACROSS LARGE HETEROGENEOUS MACHINES
	Requirements
	Existing Work
	Our Solution
	Optimization Strategies
	Performance Model
	Results
	Conclusion

	CHAPTER 3 SMOOTHERS FOR THE STOKES EQUATIONS
	The Stokes Equations and Their Discretization
	Problem Setup
	Discretization
	Structured Matrix Representation

	Multigrid
	Braess-Sarazin Relaxation Scheme
	Vanka Relaxation Scheme
	Schur-Uzawa Relaxation Scheme
	Block-Triangular Preconditioner

	Our Implementation
	Existing Work
	Performance Analysis
	Test System
	Kernels
	Vanka Patch Matrices
	Arithmetic Intensity
	Common Kernels
	Vanka-Specific Kernels
	Roofline Model
	Overall Solver Performance

	Conclusion

	CHAPTER 4 RAS+ILU FOR THE REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS
	Reynolds-Averaged Navier-Stokes (RANS) Equations
	Weak Form and Stabilization

	Modeling the Reynolds-Stress Tensor
	Simplifications
	Motivating Application
	Turbine Force

	Discretization and Linearization
	Existing Solvers and Preconditioners
	LDU Decomposition and Error Analysis
	Pressure-Convection-Diffusion (PCD)
	Least-Squares Commutator
	Augmented Lagrangian (AL)
	SIMPLE and Its Variations
	Reordering of Degrees of Freedom

	Recent Work
	Restricted Additive Schwarz (RAS) + Incomplete LU (ILU)
	Restricted Additive Schwarz (RAS)
	ILU(0)
	ILU(k)

	Software
	Proposed Solver
	Revisiting LDU Decomposition
	Solver Design
	Profiling the Solver
	Performance Model
	Homotopy or Continuation Methods
	Dynamic Solver
	Conclusions
	Future Directions

	Resources

	CHAPTER 5 CONCLUSION
	REFERENCES
	APPENDIX A DYNAMIC SOLVER IMPLEMENTATION IN FIREDRAKE

