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Abstract

Exchanging halo data is a common task in modern scientific computing applications and efficient handling of this operation is
critical for the performance of the overall simulation. Tausch is a novel header-only library that provides a simple API for efficiently
handling these types of data movements. Tausch supports both simple CPU-only systems, but also more complex heterogeneous
systems with both CPUs and GPUs. It currently supports both OpenCL and CUDA for communicating with GPGPU devices,
and allows for communication between GPGPUs and CPUs. The API allows for drop-in replacement in existing codes and can
be used for the communication layer in new codes. This paper provides an overview of the approach taken in Tausch, and a
performance analysis that demonstrates expected and achieved performance. We highlight the ease of use and performance with
three applications: First Tausch is compared to the halo exchange framework from two Mantevo applications, HPCCG and miniFE,
and then it is used to replace a legacy halo exchange library in the flexible multigrid solver framework Cedar.
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1. Introduction

A common challenge in many parallel scientific codes is
communicating boundary data between different processes.
The efficiency of this data exchange or halo exchange is critical
as it is called many times in an application (e.g. iterative
solvers) and impacts the overall performance of a code. In
this paper we will address codes that employ MPI+X (or pure
MPI) for parallel communication, and show how Tausch can
be utilized in such contexts.

Halo exchanges are often embedded directly within a larger
application, requiring hand-tuning and creating additional effort
to maintain. A goal in the present work is to design a stand-
alone exchange library that can be used as a drop-in replace-
ment for those applications. To this end, the Tausch1 library
has several design requirements, including

Ease of use: It should be straightforward to incorporate
Tausch into an existing code or to add it to a new code.
In contrast, existing halo exchange libraries can be
complicated to work with, for example with objects
living in a global namespace or with a complex API.

Flexible: It should support any type of geometry and any type
of data, ideally allowing for different data types to be
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1The name Tausch comes from the German language and translates into
English as exchange or swap.

combined into one message. This approach allows the
tool to adapt to the application it is used for, while taking
advantage of specific optimizations.

Heterogeneous: It should support both CPUs and GPUs, and
their interaction. Ideally the exchange will require min-
imal user input on the specifics of the communication.
Many modern supercomputers are inherently heteroge-
neous, thus necessitating an exchange library that can
handle multiple disparate compute units.

Performant: Communicating data is a non-trivial task as it re-
quires memory movement (contiguous and strided) and
network communication, leading to a potential perfor-
mance bottleneck in the application. The exchange op-
eration should target efficiency, and performance expec-
tations should be clearly defined.

In this work, we detail the Tausch library. It is a header-only
C++ library utilizing MPI for communication, thus relieving
the user of having to precompile and link to an additional li-
brary and allowing for maximum inlining of its member func-
tions. Its aim is to be as unintrusive as possible, making min-
imal assumptions about the code and the data. It is agnos-
tic regarding the dimension of the application geometry as it
works with the data on a memory level, storing the information
about the halos in a compressed format minimizing memory
requirements. Tausch also supports halo exchanges on hetero-
geneous systems: it facilitates halo exchanges across CPUs and
GPUs in any combination through a single API. It currently
supports both OpenCL [1] and CUDA [2] for communicating
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with GPUs. There are various performance optimizations im-
plemented in Tausch, all of which can be enabled/disabled with
the call to a single member function. Examples of such opti-
mizations include derived data types for MPI, and direct mem-
ory copies. All operations in Tausch can be called in a non-
blocking (asynchronous) fashion, with each method returning
a handler object for managing these operations, checking their
status and waiting for their completion. In all, Tausch provides
a flexible interface that can adapt to any setup while providing
several low-level optimizations to boost performance.

There are several existing solutions for communicating ha-
los. We first discuss several tools that address halo exchanges
in a generic way, allowing for their integration into any user
code. Then we mention several existing frameworks that in-
clude their own halo handling. Most of the existing generic
tools are targeted towards a specific use case or situation, with
some no longer maintained. The Data Transfer Kit (DTK) [3]
is designed primarily for physics applications, where geometric
domains may not conform to the same physical space, poten-
tially with mismatched parallel decomposition. These features
are valuable when needed, but they also introduce unnecessary
complexity. The Generic Communication Layer (GCL) [4] is
a library of communication patterns where the halo exchange
operation is divided into different layers that can be tweaked
and updated independently. It is a templated header-only C++
library and allows for flexibility in how it can be used, leading
to a more complex API. GCL is described as “old code” in its
GitHub repository [5], with its last update in 2017. We are not
aware of any applications making use of GCL.

Raja [6, 7] is a library of C++ software abstractions aiming
to enable architecture and programming model portability for
high performance applications. It also provides constructs for
efficient packing and unpacking of data on different comput-
ing devices, although it does not facilitate any actual commu-
nication. Tempi [8] is another approach that specifically targets
MPI+CUDA, improving the performance of MPI using CUDA
buffers. This design is achieved through MPI and can thus be
easily combined with other tools and libraries that use MPI. A
different approach is taken by Kokkos [9], where a new pro-
gramming model is developed that offers local mapping and
execution on a variety of architectures. It does not handle halo
exchanges and defers to other codes and frameworks for those.
Tpetra [10] is a package for Trilinos [11] implementing linear
algebra objects that uses Kokkos for local operations and pro-
vides the necessary code for facilitating halo exchanges. PETSc
also provides its own handling of halo exchanges as part of its
distributed arrays (DMDA). All of these come with their own
programming models and require the user’s code to adapt to
that. Thus, they require the use of their own custom data struc-
tures and also typically necessitate large code rewrites. Finally,
the MiniGhost [12, 13] application in the Mantevo Project [14]
is written in Fortran and serves as stand-alone code to explore
and experiment different programming models. It was last up-
dated in 2016.

To demonstrate the flexibility and performance of Tausch
we perform a number of computational tests and highlight two
applications. These computational experiments make use of the

Lassen supercomputer, part of the Livermore Computing Cen-
ter. Lassen employs the IBM Power9 CPU architecture with
40 CPU cores per node and a CPU memory bandwidth of 170
GB/s. Each node is equipped with 4 NVIDIA V100 (Volta)
GPUs with each GPU having 5120 cores, 7 TFLOPS peak per-
formance, 32 GB memory, and 900 GB/s GPU memory band-
width. The compiler used is GCC 7.3.1 together with Spectrum
MPI 10.03 and CUDA 10.1. We present some simple results
for the now decommissioned BlueWaters system [15] that was
hosted at the National Center for Supercomputing Applications
(NCSA) at the University of Illinois at Urbana/Champaign in
Section A.

The paper is organized as follows. In Section 2 we pro-
vide an overview of Tausch, both on a conceptual level and also
detailing the API. We illustrate how Tausch compresses halo
information internally in order to reduce the memory require-
ment and also to improve performance. In Section 3 we pro-
vide an overview of the various communication strategies that
are currently provided by Tausch. We describe how they have
the potential to boost the performance given the right data and
hardware. In Section 4 we provide a performance analysis of
Tausch for both a three dimensional test case on the CPU and on
the GPU. In Section 5 we compare the performance of Tausch
to the performance of two established codes, HPCCG [16] and
miniFE [17], and we discuss another project, Cedar [18], that
incorporates Tausch as their halo communication layer.

2. Tausch overview

Tausch provides a high-level API for halo exchanges using
MPI [19], CUDA [2], and OpenCL [1]. The user determines
the traffic pattern, where the data to be sent lives in memory and
where the received data is to be written to in memory. Tausch
then offers various strategies to achieve a high-performance ex-
change of the specified data, whether the data comprises a halo
or any other type of data. It is a header-only library, thus re-
lieves the user of having to precompile and link to an additional
library, and it allows for maximum inlining of its member func-
tions. It is written in C++ with a fully compatible C API, and a
Fortran interface is also available.

To begin, we first define the notion of a halo in the exchange
of data. A halo is any structured or unstructured area that is used
but typically not owned by the local process. In most applica-
tions a halo would lie along the edges of a domain, though this
is not a requirement for Tausch. We refer to data that needs to
be sent to another partition’s halo region as the send halo and,
conversely, data that needs to be updated locally with values
received from another partition as the receive halo. Figure 2.1
illustrates various types of halos, both structured and unstruc-
tured, all of which can be handled by Tausch.

2.1. High-level overview

Facilitating a halo exchange with Tausch consists of several
steps. Figure 2.2 shows a schematic of that process, where an
8× 12 grid resides on one node and the right column of 12 data
elements is sent to the node owning the adjacent block of data.
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(a) halo not including corners (b) halo including corners

(c) halo of width 2 (d) unstructured halo

Figure 2.1: Examples of different halos, with the halos highlighted in blue

1. Initialize halos in Tausch

2. packSendBuffer

4. unpackRecvBuffer
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Figure 2.2: High-level overview of Tausch.

1. Describe the halo. Tausch requires a description of the
halo regions from where in memory to either read the
sending halo data (on the sending process) or where in
memory to write the received halo data (on the receiving
process).

2. Pack the data. Closely following the implementation of a
halo exchange in pure MPI, Tausch packs the data into a
dedicated send buffer, allowing the user to continue com-
putations on the main buffer as the data to be sent is held
separately.

3. Send and receive data. This corresponds closely to a call
to MPI Send and MPI Recv. Internally Tausch creates
a communication channel that is reused on subsequent
calls to this particular send.

4. Unpack the data. The data is copied from a dedicated
receive buffer into the main buffer on the receiving end.

The above four-step process outlines the basic way of han-
dling halo exchanges using Tausch. Depending on the under-
lying hardware and MPI implementation, the user may choose
certain optimizations that modify this four-step process. For
example, when calling Tausch to take advantage of MPI de-

rived datatypes, the steps to pack and unpack the data are not
required. We will revisit this and other examples in more detail
in Section 3.

2.2. Language overview (C++, C)

Tausch is a header-only library written in C++, providing a
fully compatible C API and a Fortran interface. This makes the
process of integrating it into any project very straightforward.
In the following we will detail a subset of the API.

2.2.1. Constructor

Tausch (
c o n s t MPI Comm comm ,
c o n s t bool useDupl i ca t eOfCommunica to r ,
OutOfSync h a n d l i n g

)

The default constructor takes three arguments: The MPI
communicator to be used (default: MPI COMM WORLD), whether
to take a duplicate of the communicator (default: true), and
whether to check for race conditions and what to do then
(default: WarnMe). Duplicating the communicator isolates
Tausch from other communication and avoids any potential
interference.

2.2.2. Halo regions

i n t addSendHa lo In fo (
s t d : : v e c t o r < i n t > h a l o I n d i c e s ,
c o n s t s i z e t t y p e S i z e ,
c o n s t s i z e t numBuffers ,
c o n s t i n t remoteMpiRank

)
i n t addRecvHalo In fo (

s t d : : v e c t o r < i n t > h a l o I n d i c e s ,
c o n s t s i z e t t y p e S i z e ,
c o n s t s i z e t numBuffers ,
c o n s t i n t remoteMpiRank

)

There are multiple approaches to specifying a halo region. The
simplest way is to pass a vector of indices for halo values to
Tausch. The second parameter specifies the byte size of that
data — e.g., sizeof(real t). The third parameter specifies
how many buffers can be combined along the same communi-
cation paths (default: 1). If there is more than one buffer using
the same communication path, then they can either all use the
same halo specification (for example, multiple variables at each
point), or use different halo specifications (for example, two
different domains that are used simultaneously). The fourth pa-
rameter specifies the receiving MPI rank (default: −1, meaning
do not set a fixed remote rank). The receiving MPI rank may
be the same MPI rank as the sender, which allows Tausch to
optimize the halo exchange accordingly. The function also re-
turns the ID of the halo for subsequent invocations on the halo
region.
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Internally Tausch does not store the full vector of indices but
instead forms a compressed view. Section 2.4 shows how that
is done and its implications. At the same time, the compressed
form can be sent directly to Tausch rather than a raw vector of
indices.

Specifying a receive halo region is similar to that of the send
halo, with the main difference being the MPI rank passed on as
fourth argument, which refers to the sending MPI rank instead
of the receiving MPI rank.

2.2.3. Packing and unpacking data

S t a t u s p a c k S e n d B u f f e r (
c o n s t s i z e t h a l o I d ,
c o n s t s i z e t b u f f e r I d ,
unsigned char * buf ,
c o n s t bool b l o c k i n g

)
S t a t u s unpackRecvBuf fe r (

c o n s t s i z e t h a l o I d ,
c o n s t s i z e t b u f f e r I d ,
unsigned char * buf ,
c o n s t bool b l o c k i n g

)

Packing the send data requires moving data from the main
buffer into a dedicated send buffer, which is internal to
Tausch. The halo ID is the integer returned by calls to
addSendHaloInfo and addRecvHaloInfo. The buffer ID
(starting at 0 counting up) is important only if more than one
buffer is combined as one message. The third parameter is the
main buffer where the send halo data is stored. Unpacking
the received data is done in an equivalent way to the packing
process.

By default, packing and unpacking data is done while
blocking the main thread until the operation has completed.
With blocking=false the packing and/or unpacking is done
asynchronously and this function returns a Status object
for that process. Making sure that the process has completed
before its data is used further has to either be taken care of
by the user, or Tausch can be set to either print a warning
or wait on these processes whenever a send is called after a
non-blocking pack, or an unpack is called after a non-blocking
receive.

The Status object provides a unified way to handle such
calls, it provides methods to check its status (isRunning()
and isCompleted()), and wait() in order to block the
main thread until the connected operation has completed.
Inside this object lives a std::shared future<void>, an
MPI Request, a cudastream t, or an OpenCL UserEvent,
but the user does not have to worry about which one it is.
However, if desired, the underlying object can be obtained
using conversion. For example, assigning the Status object
to an object of type std::shared future<void> will return
the future contained inside Status.

When calling Tausch with derived MPI datatypes for com-
munication, these calls are not required as the data is sent di-

rectly from and received directly into the main buffers. This op-
timization avoids the additional copy performed at these steps,
however each buffer sends a separate message instead of com-
bining multiple buffers in one message. Additionally, the halo
data in the main buffers cannot be touched while communica-
tion remains active. These performance trade-offs require care-
ful consideration.

2.2.4. Sending and receiving data

S t a t u s send (
s i z e t h a l o I d ,
c o n s t i n t msgtag ,
i n t remoteMpiRank ,
c o n s t s i z e t b u f f e r I d ,
c o n s t bool b l o c k i n g ,
MPI Comm communica tor

)
S t a t u s r e c v (

s i z e t h a l o I d ,
c o n s t i n t msgtag ,
i n t remoteMpiRank ,
c o n s t s i z e t b u f f e r I d ,
c o n s t bool b l o c k i n g ,
MPI Comm communica tor

)

Calls to send and recv move the data between different
MPI ranks. The halo ID is the integer returned by the call to
addSendHaloInfo and addRecvHaloInfo. The message tag
corresponds to the integer tag required for MPI communica-
tion. The remote MPI rank refers to the sender/receiver of the
message (default: −1, meaning take the rank specified when
adding halo information). When multiple buffers use the same
communication path and thus share the same halo ID, then the
buffer ID specifies which one of these buffers we are operating
on (counter starting at 0). For the send andrecv calls, this pa-
rameter only needs to be specified when MPI derived datatypes
are used (default: −1). The send operation is by default non-
blocking (blocking=false) whereas the receive operation is
by default blocking (blocking=true). The default values for
blocking are not due to any particular performance considera-
tion, but rather were chosen arbitrarily as sensible defaults. The
final parameter enables temporary overwriting of the MPI com-
municator for the specific call to send or recv. If not specified
(or set to MPI COMM NULL) the communicator specified during
construction of Tausch is used. Both methods return a Status
object (containing the underlying MPI Request used for each
operation).

2.2.5. Other member functions

void s e t S e n d C o m m u n i c a t i o n S t r a t e g y (
s i z e t h a l o I d ,
Communicat ion s t r a t e g y

) ;
void s e t R e c v C o m m u n i c a t i o n S t r a t e g y (

s i z e t h a l o I d ,
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Communicat ion s t r a t e g y
) ;

This enables any specific communication strategies for sending
and receiving. These need to be called after the respective halo
has been set up and before any communication happens. See
Section 3 for a detailed overview of the different communica-
tion strategies.

void se tOu tOfSyncHand l ing (
OutOfSync h a n d l i n g

) ;

All the functions in Tausch doing the heavy lifting (pack/un-
pack and send/receive) have the option to be called without
blocking the main thread (blocking=false). Even though
Tausch cannot guarantee that using this option will not lead to
a race condition, it can make sure that a send waits for the cor-
responding pack, and that an unpack waits for the correspond-
ing receive. There are three possible values of the OutOfSync

enum, the first one is DontCheck. The second and default value
is WarnMe, all this does is print a message to the screen that a
potential race condition has been detected. The third possible
value is Wait which makes Tausch wait for the pack or receive
to complete before proceeding with the send or unpack.

2.3. OpenCL and CUDA
Using Tausch in combination with OpenCL and CUDA

is nearly identical to the API described in Section 2.2. In
order to use either or both of these technologies, the macros
TAUSCH OPENCL and TAUSCH CUDA are required before includ-
ing the header file. Only the process of packing/unpacking
data require a different API call, packSendBufferOCL

and unpackRecvBufferOCL (packSendBufferCUDA and
unpackRecvBufferCUDA respectively), which contains Open-
CL/CUDA specific code. In addition, before using the OpenCL
feature of Tausch, the specific OpenCL environment must be
specified, either by passing an existing OpenCL environment
to Tausch (setOpenCL) or by requesting Tausch to set up an
environment (enableOpenCL).

In order to facilitate GPU-to-GPU communication, Tausch
by default first transfers GPU data to the CPU and then does the
data transfer using MPI before transferring the data to the re-
ceiving GPU. Most MPI implementations allow GPU-to-GPU
communication to happen without going through the CPU. We
will revisit this as part of our communication strategies in Sec-
tion 3.4.

For NVIDIA GPUs using CUDA, Tausch also supports
multiple GPUs per MPI rank, as it can work with pointers to
memory regions on different GPUs.

2.4. Compressed storage of halo information
Tausch uses a compressed format to store halo information

instead of storing a full vector indices. The compressed storage
used by Tausch is optimized for structured halo regions, how-
ever, it will work for any halo region form or shape.

The user can either directly specify the halo regions using
the compressed format, or make use of a convenience function

that takes in a set of indices of halo data and converts it into the
compressed format. In the latter case, Tausch decomposes that
region up into rectangular subregions corresponding to how the
data is laid out in memory. Such a region does not necessarily
translate to a rectangular region in the physical setup. Each such
subregion is defined using these 4 integers (see Figure 2.3):

1. Starting index of the region;
2. number of consecutive values (i.e., number of columns);
3. frequency of consecutive values (i.e., number of rows);

and
4. stride between the sets of consecutive values.

0 1 2 3 4 5 6 7

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

8 9

18 19

28 29

38 39

48 49
Starting index: 8

Columns: 2
Rows: 5

Stride: 10

→ [8, 2, 5, 10]

Figure 2.3: Example of compressed storage: 10 integers (40 bytes) stored using
4 integers (16 bytes), halo region highlighted in blue.

Using a compressed form allows highly efficient memory
operations using memcpy, but also using strided copies in
OpenCL and CUDA. Additionally, the memory requirement
of storing halo information is drastically reduced, particularly
in cases of structured data. In the example given in Figure 2.3
the compressed storage requires 2/5 of the memory required for
a full set of halo indices, and the effect increases with larger
halo regions. Yet, in the case of unstructured halo regions, the
memory requirement of using the compressed storage might
increase if the region does not easily decompose into into
rectangular subregions.

The rectangular subregions found by Tausch do not neces-
sarily correspond to rectangular regions in the mesh. Instead,
in a slightly more abstract sense, they correspond to rectangu-
lar regions in the memory — e.g., the example shown in Fig-
ure 2.4 illustrates how a 10 × 2 rectangular region in the mesh
is detected as 20 × 1 rectangular region in the memory.

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

Starting index: 0
Columns: 20

Rows: 1
Stride: 0

→ [0, 20, 1, 0]

Figure 2.4: Example of rectangular region not corresponding directly to mesh
region, halo region highlighted in blue.

The same concept extends to three dimensions, where a
three dimensional volume is interpreted by Tausch as a two or
possibly one dimensional memory region. It is also possible to
directly pass the halo region information in compressed form to
Tausch instead of vectors of indices. In the case of the example

5



shown in Figure 2.4 both representations (10×2 and 20×1) are
valid.

In general, a one dimensional compression is preferential to
a two dimensional one, as it allows the use of fewer memcpy
operations and thus offers better performance. Since a halo in-
herently corresponds to the surface of the domain (i.e., at most
two dimensional), a three dimensional compression of the halo
brings little to no benefit while increasing the overhead of the
actual compression step.

3. Communication strategies

Tausch implements a robust default strategy: always pack
the data wherever it lies into a dedicated send buffer on the CPU
that is communicated with MPI. Even though this is guaranteed
to execute properly, it possibly yields suboptimal performance.
We next review several additional methods that can be enabled
by the user.

3.1. Derived datatypes
When communicating data between CPU ranks, the use of

derived datatypes avoids copying the data-to-be-sent into a ded-
icated send buffer before handing it off to MPI (step 2 in Sec-
tion 2.1) and, similarly, on the receiving end skips the interme-
diate step of receiving the data into a dedicated receive buffer
before distributing the data into the main buffer (step 4 in Sec-
tion 2.1).

Skipping these two copy operations offers the potential for
improved performance if implemented efficiently in MPI. How-
ever, it also means that the locations of the data-to-be-sent can-
not be altered until the send operation has completed. Adding
the intermediate step of copying the data into a dedicated send
buffer mitigates this caveat (at the possible expense of perfor-
mance).

3.2. Persistent communication
MPI supports persistent communication, where a commu-

nication channel is established between a sender and receiver
including the sending and receiving buffers and any informa-
tion required for the communication. Such a channel can then
be re-used repeatedly in subsequent iterations. Bypassing this
overhead has the potential for improved performance if it is im-
plemented efficiently in MPI. When enabled, Tausch will man-
age persistent communication channels without requiring addi-
tional user interaction.

3.3. Single-Copy and Multi-copy
When halo data needs to be moved to or from a GPU, then

Tausch can perform this copy in one of two ways:

Single-copy: first transfer all received data as a contiguous
memory buffer to the device in a single memory copy
followed by a redistribution of data on the device; or

Multi-copy: directly transfer data to the corresponding mem-
ory locations on the device using two-dimensional mem-
ory copies.

The advantage of the former is that the data movement be-
tween the CPU and the GPU is done with a single memory copy
and one big chunk of data, independent of the data shape. In ap-
plications where the memory movement between the CPU and
GPU is a bottleneck, this can optimize the performance of that
operation at the expense of an additional memory copy on the
device.

The advantage of the latter is that the data is directly written
to the appropriate memory locations on the device, requiring
each subregion of the halo to execute its own memory copy
operation. This can be expensive if the halo region consists of
many subregions, but may be less expensive if the halo region
is an almost perfect rectangle. Figure 3.1 shows a comparison
of these two approaches in three dimensions on Lassen. The
test case is a cube with the halo region along the surface — i.e.,
6 halo subregions. Based on the results from Figure 3.1 there
is a reasonable expectation for the single copy strategy to yield
better performance, thus Tausch implements this as a default.

103 104 105 106 107

message size [bytes]

10−1

100

tim
e

[m
s]

GPU-to-CPU, single copy
GPU-to-CPU, multi copy
CPU-to-GPU, single copy
CPU-to-GPU, multi copy

Figure 3.1: Data movement in three dimensions between the CPU and GPU for
NVIDIA V100 (Volta) on Lassen.

3.4. CUDA-aware MPI

A special case arises when two or more GPUs communicate
with each other using CUDA. If CUDA-aware MPI is available
and supported by the underlying architecture, then moving the
data between the GPUs can be done without (explicitly) going
through the CPU. In order to use this feature in Tausch, the
communication strategy for a sending and/or receiving halo id
needs to be set, everything else will be handled internally by
Tausch. Figure 3.2 compares the performance of using CUDA-
aware MPI to the default strategy of passing the data through
the CPU for 100 iterations of a simple halo exchange using
Tausch across 512 GPUs on Lassen for a 7-point stencil. Note
that we do not measure the stencil applications but only the
communication required for such a stencil. The colored regions
show the range of values (min/max) across all ranks, the lines
show the average timings.
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103 104 105 106 107 108

number of grid points

10−1

100

101

102

tim
e

[m
s]

CUDA-aware MPI
Through CPU

Figure 3.2: Comparing performance of halo exchange for 7-point stencil using
CUDA-aware MPI and passing through CPU on 512 GPUs on Lassen.

Figure 3.2 shows that using CUDA-aware MPI has the po-
tential to greatly improve the performance, up to an order of
magnitude. Since this feature is highly dependent on the under-
lying MPI architecture, it is hard to predict whether this feature
is available and whether it will, in fact, lead to a performance
gain. However, it clearly as the potential to do so, thus it is im-
portant for Tausch to support either communication path, giving
the user maximum flexibility. It is worth pointing out that us-
ing CUDA-aware MPI with Tausch is as simple as setting the
communication strategy to use such, no other adjustments are
necessary.

4. Performance analysis

In this section we explore the performance of Tausch in
more detail in order to highlight its efficiency and to expose
potential bottlenecks.

4.1. Performance Model

We consider two different performance models, one that
only models the communication (based on the max-rate
model [20]) and one that includes packing/unpacking the
data before and after communicating. The max-rate model is
an extension of the traditional postal model, and can capture
injection limits observed on SMP nodes. For a detailed analysis
of the max-rate model we refer the reader to [20].

In order to compare the performance of Tausch to the
performance model we consider a test that performs a three-
dimensional halo exchange. Figure 4.1 shows a visualization of
this halo exchange test in three dimensions, and Algorithm 4.1
describes the actual algorithm that is being used. The test code
implementing this example is run on the Lassen supercomputer.

Figure 4.1: Visualization of three-dimensional halo exchange used as test case

The max-rate performance model, which focuses on com-
munication, can be expressed using the following equation,

T = tc + rα +
k n

min(RN , kRC)
(4.1)

where tc is the time for copying the data into/out of dedicated
send/receive buffers, r is the number of messages a rank is send-
ing, α is the latency introduced by MPI per message, k is the
number of processes, n is the number of bytes sent per process,
RN is the injection bandwidth (how fast data can leave or en-
ter the node and leave or enter the network), and RC is the rate
that can be achieved by each process in sending or receiving a
message. The values for α, RN and RC can be found in Table 1,
with the values obtained through experiment. Note that RN only
impacts the rendezvous protocol.

protocol α [s] RN [B/s] RC [B/s]

short 1.38 × 10−6 — 3.81 × 109

eager 2.26 × 10−6 — 2.36 × 109

rendezvous 1.14 × 10−5 2.28 × 109 1.77 × 1010

Table 1: Max-rate model parameters for Lassen, obtained through experiment.

We present a performance evaluation for test runs on both
the CPU and the GPU. Note that the only difference between
those two is in the copying the halo data into their dedicated
send buffers, for the GPU test runs this involves calls to
cudaMemcpy.

Figure 4.2 shows the comparison of the performance model
and the test code. The colored regions show the range of val-
ues (min/max) across all ranks, the lines show the average tim-
ings. In order to get a handle on the average expected perfor-
mance, the parameters for the performance model are for inter-
node communication (i.e., using the network) and for copying
only consecutive chunks of memory (without stride). Thus,
the model will be slightly too optimistic for memory copies,
especially for the larger problem sizes. For the smaller prob-
lem sizes data located at some stride still falls within one or
just a few cache lines resulting in a performance that is near
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Algorithm 4.1 Algorithm of test code
1: Create data buffers
2: Compose halo information
3: n test← number of tests
4: n timing← number of timings per operation
5: for test←1, n test do
6: MPI Barrier

7: Start pack timer
8: for t←1, n timing do
9: Pack halo data to be sent off

10: into dedicated send buffer
11: end for
12: Stop pack timer
13: Start communication timer
14: for t←1, n timing do
15: Send data off to neighbors
16: using MPI Isend

17: Receive data from neighbors
18: using MPI Irecv + MPI Wait

19: end for
20: Stop communication timer
21: Start unpack timer
22: for t←1, n timing do
23: Unpack received halo data
24: out of dedicated receive buffer
25: end for
26: Stop unpack timer
27: end for

ideal. On the other hand, the communication prediction of the
model is slightly pessimistic, ranks that lie on the same node
and/or socket will result in faster communication performance
than the predicted performance. Overall, the prediction by the
performance model will be an average of the best and worst
performance between any two ranks.

The minimum values for the test runs are the fastest time
for doing a halo exchange between any two ranks, and likely
stem from two ranks living on the same socket. Conversely, the
maximum values likely stem from two ranks living on differ-
ent nodes that are far apart. From the results we see that the
modelled and actual performance closely align.

4.2. Comparison to MPI Pack

MPI provides its own routines for packing/unpacking,
MPI Pack and MPI Unpack. Figure 4.3 shows a comparison
of MPI Pack to the packing routine in Tausch on both the
CPU and GPU using CUDA-aware MPI. The test case is a
three dimensional cube whose surface is packed into a six
dedicated send buffers (to be sent to its 6 neighbors). The test
code for MPI Pack is implemented using plain MPI and is not
used/supported in Tausch. We see that Tausch performs better
than MPI Pack for packing data: up to 5 times faster on the
CPU and up to 2500 times faster on the GPU. The speedup
is at least in part due to the fact that Tausch is optimized for
structured communication, whereas MPI Pack is assuming a
more general pattern.
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Figure 4.2: Performance Model on CPU using 320 ranks across 8 nodes (top)
and GPU using 32 ranks across 8 nodes (bottom) running on Lassen.

5. Example Applications

In this section we highlight the ease of use and performance
with three applications. First, Tausch is compared to two Man-
tevo applications, HPCCG [16] (CPU-only) and miniFE [17]
(CPU and GPU), and lastly we use it to replace a legacy halo
exchange library in the flexible multigrid solver framework,
Cedar [18]. Due to the flexibility of Tausch and the simplicity of
its API, dropping Tausch into existing code is straightforward.

5.1. Tausch in HPCCG

The Mantevo application HPCCG [16] is a simple conjugate
gradient code that generates a 27-point finite difference matrix
for a 3D chimney domain on an arbitrary number of proces-
sors. It captures the performance of popular Krylov based linear
solvers that rely on key linear algebra operations, such as sparse
matrix-vector multiplications and dot products. It was chosen
for a comparison with Tausch as it exhibits strong similarities
to Tausch in the handling of halo data. Thus, this allows us to
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Figure 4.3: MPI Pack vs packSendBuffer in Tausch, packing surface of three
dimensional cube on both the (top) CPU and (bottom) GPU with CUDA, on
Lassen.

get an accurate understanding of the performance of Tausch in
comparison to an established code. We started out by running
the original application on Lassen on 320 CPU cores (spread
across 8 nodes). Then we replaced the halo exchange logic with
calls to Tausch and re-ran the code with the same configuration.
The result it shown in Figure 5.1.

Figure 5.1 shows a comparison of HPCCG with and
without Tausch. The colored regions show the range of values
(min/max) across all ranks, the lines show the average timings.
Tausch outperforms HPCCG, often improving performance by
an order of magnitude. One reason for this performance boost
is the re-use of information about the halos. For example,
where HPCCG is re-creating intermediate buffers at each
iteration, Tausch is able to re-use buffers of the right size from
previous iterations. Tausch also encodes the halo information
once during setup allowing for more performant memory
operations to be done at each iteration instead of simple
looping over each halo data point. These optimizations are not
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Figure 5.1: Halo exchange in HPCCG with and without Tausch using 320 MPI
ranks across 8 nodes on Lassen (40 ranks per node).

trivial to be implemented by hand, but come for free with the
use of Tausch. They all result in a lower overhead per iteration
and thus a significant speed-up. This has a noticeable effect on
the overall absolute runtime as up to 10% of the total runtime
is spent in the halo exchange.

5.2. Tausch in miniFE

The Mantevo application miniFE [17] provides implemen-
tations of an unstructured finite elements code on various plat-
forms. It provides implementations on both the CPU and the
GPU (using CUDA) with a clear implementation of its own
halo handling, making it very straightforward to switch to us-
ing Tausch. Both the CPU and GPU runs are done with 320
ranks, spread across eight nodes for the CPU and 128 nodes for
the GPU. We first ran the original code and then the modified
version with Tausch. The result is shown in Figure 5.2.

The colored regions show the range of values (min/max)
across all ranks, the lines show the average timings. The up-
per plot in Figure 5.2 shows that on the CPU the halo exchange
in miniFE takes about the same amount of time with Tausch
and the original code, the difference between the two is negli-
gible. On the GPU, the original code performs slightly better
than Tausch, yet the difference between the two is still negligi-
ble. The clear advantage of using Tausch, however, is the need
for significantly fewer code lines, minimizing the risk of intro-
ducing accidental bugs. The overall proportion of time spent in
the halo exchange is less than 30% in the GPU case and less
than 25% in the CPU case.

It is worth pointing out that the part of the code that han-
dles Tausch is nearly identical in both the version for the CPU
and the one for the GPU. The only differences being the buffer
pointers, and the setting of CUDA-aware MPI strategy (a single
line of code) based on a compile-time macro. This highlights
yet again the ease of using Tausch in a variety of codes.
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Figure 5.2: Halo exchange in miniFE with and without Tausch using 320 ranks
across eight nodes on the CPU (top) and across 128 nodes on the GPU (bottom).

5.3. Tausch in Cedar
Tausch plays a crucial role in the structure-exploiting

variational multigrid library Cedar [18]. Replacing a legacy
halo-exchange library (MSG [21]), Tausch provides structured
communication for the solver in two and three dimensions. In
addition to providing performant halo communication with pre-
dictable performance, Tausch enables parallel plane relaxation
with coarse-grid problems redistributed on subcommunicators.
Prohibited in the past by the legacy communication library,
Tausch supports many non-interfering instances. This is used
to create thousands of instances of Tausch for large 3D solves
with minimal overhead [22].

Figure 5.3 shows a comparisons of the performance of halo
exchanges in Cedar when using Tausch and the previous solu-
tion MSG. The test case is a three-dimensional halo and sten-
cil exchange across 320 MPI ranks spread across 8 nodes on
Lassen (40 ranks per node). The colored regions show the range
of values (min/max) across all ranks, the lines show the aver-
age timings. Tausch consistently performs better than MSG.
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Figure 5.3: Cedar with Tausch and MSG, 320 MPI ranks across 8 nodes on
Lassen (40 ranks per node).

A major source of performance gain is the communication of
the stencil operator data. MSG communicates each stencil di-
rection in its own message, whereas Tausch is able to combine
them into larger messages, as they are sent along the same com-
munication path. Enabling Tausch to combine them into larger
messages happens during setup, where different halo specifi-
cations that use the same communication paths can be tied to-
gether. Since at least around 30% of the time in Cedar is spent
in communication [23], this improvement leads to significant
performance gains overall.

6. Conclusion

In this paper we have introduced a new tool called Tausch
that provides a simple API for moving halo data on heteroge-
neous machines. We have illustrated how its design maximizes
performance while minimizing memory requirements. Measur-
ing its performance against a performance model in three di-
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mensions on both the CPU and GPU showed that its perfor-
mance lies within expectations. Comparing its performance to
the Mantevo applications HPCCG and miniFE confirmed its
performance as it was able to match or outperform the appli-
cations by up to an order of magnitude. Finally, we took the
framework Cedar and replaced the legacy communication li-
brary, MSG, by Tausch and achieved considerable performance
gain of up to an order of magnitude. Increased flexibility in the
design of Tausch also enabled scalable parallel plane relaxation
in Cedar previously prohibited by the legacy communication
library.

7. Resources

Tausch is hosted on GitHub and is licensed under the MIT
license: https://github.com/luspi/tausch.
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A. BlueWaters

BlueWaters [15] was located at the National Center for Su-
percomputing Applications (NCSA) at the University of Illi-
nois at Urbana/Champaign. It had two different types of com-
pute nodes, XE and XK. Each XE compute node had 2 AMD
6276 Interlagos CPUs (each 16 cores, 2.3 GHz operating fre-
quency each, and 4 GB system memory) with a CPU mem-
ory bandwidth of 102.4 GB/s. Each XK compute node had a
single AMD 6276 Interlagos CPU and one NVIDIA GK110
Keppler GPU (2688 cores, 1.31 TFLOPS peak performance, 6
GB memory, 250 GB/s GPU memory bandwidth) with a CPU
memory bandwidth of 51.2 GB/s.

The system was decommissioned at the start of 2022, but
before it went offline we were able to run a simple performance
analysis on its XE6 nodes (CPU-only).

The setup for the performance analysis is identical to the
setup presented in Section 4. The test runs were run with a total
of 256 ranks spread across 16 nodes, resulting in 16 ranks per
node. Figure A.1 shows the resulting comparison between our
test runs and our model data. The colored regions show the
range of values (min/max) across all ranks, the lines show the
average timings. The parameters for the performance model are
for inter-node communication (i.e., using the network) and for
copying consecutive memory chunks (without any stride). Thus
the model will be slightly too pessimistic for communication as
the test runs include some on-node/on-socket communication,
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Figure A.1: Performance Model on CPU using 256 ranks across 16 nodes on
BlueWaters.

and slightly too optimistic for memory copies as our test case
involves strided memory accesses.

For the test runs the minimum/maximum values are the
fastest/slowest performance between any two ranks in the
setup. Two ranks on the same node will result in better than
average performance, two ranks living on two nodes far apart
will result in worse than average performance.

We see that the performance model aligns very well with
the data, the observed performance is very close to the expected
performance.
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