
PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Multigrid on Heterogeneous Systems

A Look at Structured Stencil Computations

MPI + OpenMP + OpenCL

Lukas Spies1, Luke Olson1, Scott MacLachlan2, Michael
Campbell1, Daniel Bodony1, William Gropp1

1 The Center for Exascale Simulation of Plasma-Coupled Combustion (XPACC),
University of Illinois at Urbana-Champaign, USA, http://xpacc.illinois.edu

2 Department of Mathematics and Statistics, Memorial University of Newfoundland,

Canada

1

http://xpacc.illinois.edu

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Introduction
Why target heterogeneous systems?

I Combine compute power of both CPUs
and GPUs

I Avoid having one sit idle while the other
is busy

I Chance for performance increase

Challenges when working with BLAS-1
(basic linear algebra subprograms, level 1 (e.g.,
“axpy”-type operations))

I BLAS-1 has low computational intensity

I BLAS-1 requires a lot of communication

Image source: https://bluewaters.ncsa.illinois.edu/image/image gallery?img id=11748

2

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Model problem

I Model problem: Laplace’s equation in two dimensions,

∇2u = 0.

I Dirichlet boundary conditions (set to 0)

I Domain: [0, 1]× [0, 1]

I Four-color Gauss-Seidel: Take weighted average of each point
and its 8 surrounding points (Mehrstellen FD stencil)

3

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Coarse partitioning

N

M
0

1

1

MPI #1 MPI #2

MPI #3 MPI #4

4

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

CPU/GPU partitioning designs

N

M0

1

1

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

Halo design

CPU GPU CPU GPU

CPU GPU CPU GPU

Slab design

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

L-shape design

Halo region

5

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Blue Waters

MPI
+

OpenMP

MPI
+

OpenMP

MPI
+

OpenMP

MPI
+

OpenCL

XE6 node: XK7 node:
2 AMD 6276 Interlagos 1 AMD 6276 Interlagos

1 NVIDIA K20X

I each Interlagos: 2.3 GHz peak performance, 4 memory
channels, 32 GB physical memory

I each K20X: 1.31 TFLOPS peak performance, 6 GB physical
memory

6

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Threading for hybrid approach

int main()

return 0;

shared memory

std::launch::async

CPU

OpenMP

CPU

OpenCL

blocking calls

GPU

std::future::wait()

I Using C++11 future class for asynchronous threading

7

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Numerical experiments

1. Test various OpenMP thread numbers and OpenMP
schedulers:

• static: equal chunks for each thread
• dynamic: assign small chunks to threads, let each thread check

back for more work
• guided: like dynamic, but with decreasing chunk size

2. Test various device-to-host ratios

3. Scaling behavior of hybrid code

4. Analyse roofline model

5. Performance model

Notation: host-to-device ratio := ω

8

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

CPU-only benchmark

Actual Timings in seconds Efficiency

2 4 6 8 10 12 14 16
6

8

10

12

14

16

18

OMP_NUM_THREADS

ru
n

ti
m

e
[s

]

static
static, 1
dynamic, 1
dynamic, 10
dynamic, 100
guided, 10

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

OMP_NUM_THREADS

T
1

/ (
 T

t
*

t
)

static
static, 1
dynamic, 1
dynamic, 10
dynamic, 100
guided, 10

I Varying number of OpenMP threads for various OpenMP
schedulers

I 40, 000× 40, 000 points, 4 MPI ranks, 5 iterations

I Fastest time: 6356.43 ms

9

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Hybrid OpenMP benchmarks

Actual Timings in seconds Efficiency

2 4 6 8 10 12 14 16
1.5

2

2.5

3

3.5

4

OMP_NUM_THREADS

ru
n

ti
m

e
[s

]

static
static, 1
dynamic, 1
dynamic, 10
dynamic, 100
guided, 10

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

OMP_NUM_THREADS

T
1

/ (
 T

t
*

t
)

static
static, 1
dynamic, 1
dynamic, 10
dynamic, 100
guided, 10

I Varying number of OpenMP threads for various OpenMP
schedulers

I 40, 000× 40, 000 points, 4 MPI ranks, 5 iterations, ω = 0.9

I Fastest time: 1898.2 ms

10

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Varying device-to-host ratio

0.1 0.25 0.45 0.65 0.85 0.99
1

2

3

4

5

6

7

portion of points handled by GPU

ru
n

ti
m

e
[s

]

CPU CPU

CPU

GPU GPU GPU

I 40, 000× 40, 000 points, 4 MPI ranks, 5 iterations,
8 OpenMP threads per rank

11

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Weak and strong scaling

1 4 8 16 32 64 128 256 512 1024
1

1.5

2

2.5

3

MPI ranks

ru
n

ti
m

e
[s

]

hybrid weak scaling

1 4 8 16 32 64 128 256 512 1024
0.01

0.1

1

2

MPI ranks

ru
n

ti
m

e
[s

]

hybrid strong scaling
ideal strong scaling

(a) weak scaling (b) strong scaling

I weak scaling: 20, 000× 20, 000 points per MPI rank

I strong scaling: 20, 000× 20, 000 points overall problem size

I both: 5 iterations, ω = 0.9

12

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Roofline model

0.03125 0.0625 0.125 0.25 0.5 1 2 4 8 16
4

8

16

32

64
81

128

256

512

1024

2048

Arithmetic Intensity

G
F

lo
p

s/
s

I Arithmetic intensity: Measure of FLOPS vs amount of
memory accesses; we measured it with Oclgrind

I Theoretical peak performance of model problem: 81 GFLOPS,
about 6.2% of peak performance of GPU (1.31 TFLOPS)

13

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Performance model

0.1 0.25 0.45 0.65 0.85 0.99
0

2

4

6

8

10

12

14

portion of points handled by GPU

ru
n

ti
m

e
[s

]

measured
predicted

1.25k2.5k 5k 7.5k 10k 15k 20k 25k
0

1

2

3

4

5

sqrt of dimension

ru
n

ti
m

e
[s

]

measured
predicted

T = max(Tc,Tg)k + (Tc→c + Tc→g + Tg→c)(k− 1) + TmoveSoln

kernel execution halo exchanges

k := iteration count (here: k = 5)

download solution

from GPU

14

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Why not use package abc?
I Frameworks/Libraries:

• Maestro: provides automatic data transfer, task decomposition
across multiple devices, autotuning of certain dynamic
parameters

• SnuCL: provides API for using all compute units in a cluster as
if they were located in the host node (no need for MPI)

• ViennaCL: linear algebra library for computations on many-core
architectures (GPUs, MIC) and multi-core CPUs

I Key challenges for frameworks/libraries:

• Find parameters for autotuning
• Fine-grained data-movement is tricky

I We needed ability to control fine-grained data movement
between compute units

I Results and performance modelling can give important
information for improving existing libraries/frameworks

15

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Takeaway

I Heterogeneous systems provides possibility of using CPUs and
GPUs simultaneously

I C++11 future class provides easy access to threading

I OpenMP alone can only provide limited speedup (low
efficiency)

I Hybrid code achieved speedup of 3.3 over CPU-only code

I Optimal for GPU to handle a large portion of the points

I Very low arithmetic intensity of 0.4375 leading to a peak
performance of the code of 81 GFLOPS, i.e., more than 90%
of GPU remain idle

I Improving data bandwidth between CPU and GPU can
improve performance of code, e.g., by using one GPU for
multiple partitions

16

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Future work

I apply concept to multigrid V-cycle and eventually GMRES
with multigrid preconditioner

I improve performance model

I extend to three dimensions

I use higher order stencils (e.g., Q2 FEM) and coupled systems

I increase halo width

17

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Thank you!

This material is based in part upon work supported by the Department of Energy,
National Nuclear Security Administration, under Award Number DE-NA0002374.

18

